Notivation & Goals

Formalism 0000 $\psi(2S) \pi^+$

 $J/\psi \pi^{+}\pi^{-}$

Perspectives

Summary 000

Exotic Mesons and Final State Interactions in Electron-Positron Collisions

Daniel Molnar

Collaborators: Igor Danilkin and Marc Vanderhaeghen

JG U JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Phys. Lett. B 797, 134851 (2019)

Phys. Rev. D 102, 016019 (2020)

Motivation & Goals

Formalism

- Cross Section
- Rescattering s-channel
- Left-Hand Cuts

3 $\psi(2S) \pi^+\pi^-$

- Experimental Results
- Results for $e^+e^-\psi(2S) \pi^+\pi^-$

$J/\psi \pi^+\pi^-$

- Experimental Results
- Strange Partner of $Z_c(3900)$?
- S- and D-wave Rescattering
- Results for $e^+e^- \rightarrow J/\psi \ \pi^+\pi^-$

Perspectives

Motivation & Goals			
••			

•
$$e^+e^- \rightarrow \psi(2S) \pi^+ \pi^-$$

• $e^+e^- \rightarrow J/\psi \pi^+ \pi^-$
• $e^+e^- \rightarrow h_c \pi^+ \pi^-$

Goals

- Simultaneous description of the invariant mass distributions;
- ππ final state interaction using state-of-the-art dispersive formalism;
- Test hypothesis that charged exotic states are real resonances;
- Robust approach to obtain the quantum numbers of the intermediate states.

Formalism ●○○○		

Independent Helicity Amplitudes

P-symmetry: \mathcal{H}_{++} , \mathcal{H}_{+-} , \mathcal{H}_{+0} , \mathcal{H}_{0+} and \mathcal{H}_{00}

• CP-symmetry: $J_{\pi\pi} \rightarrow \text{even}$ • Bose-symmetry: $I_{\pi\pi} = 0$, 2 • $I_{\psi} = 0$; $I_{\gamma} = 0$, 1 \Longrightarrow $I_{\pi\pi} = 0$

$$\mathcal{H}_{\lambda_1\lambda_2}(s,t) = H^{(Z_c)}_{\lambda_1\lambda_2}(s,t) + H^{R}_{\lambda_1\lambda_2}(s,t)$$

Helicity Amplitude with Rescattering

$$\mathcal{H}_{\lambda_1\lambda_2}(s,t) = \mathcal{H}_{\lambda_1\lambda_2}^{(Z_c)}(s,t) + \Omega(s) \left\{ a + b \, s - \frac{s^2}{\pi} \int\limits_{4m_\pi^2}^{\infty} \frac{ds'}{s'^2} \frac{\operatorname{Disc}\left(\Omega^{-1}(s')\right) h_{\lambda_1\lambda_2}^L(s')}{s' - s} \right\}$$

• 2 subtraction constants to reduce the sensitive to high energy.

Invariant Amplitudes

• The helicity amplitude $\mathcal{H}^{\mu\nu}$ can be written in the general form as $\mathcal{H}^{\mu\nu} = \sum_{i=1}^{5} F_i L_i^{\mu\nu}$

where F_i are the invariant amplitudes and $L_i^{\mu\nu}$ is a complete set of Lorenz structures.

• For the S-wave: $h_{++}^{(0)}(s) = \frac{s - q^2 - m_{\psi}^2}{2} f_1(s) - q^2 m_{\psi}^2 f_4(s)$ $h_{00}^{(0)}(s) = -q m_{\psi} \left(f_1(s) - \frac{s - q^2 - m_{\psi}^2}{2} f_4(s) \right)$

with f_i the partial wave expansion of F_i .

The helicity amplitudes are correlated

$$h^{(0)}_{++}(s)\pm h^{(0)}_{00}(s)\sim \mathcal{O}(s-(q\pm m_\psi)^2)$$

Z_c Exchange Mechanism

$$\begin{split} \mathcal{H}_{+-}^{Z_c} &= \mathcal{H}_{+0}^{Z_c} = \mathcal{H}_{0+}^{Z_c} \approx \mathbf{0} \\ \sum_{\lambda_1 \lambda_2} |\mathcal{H}_{\lambda_1 \lambda_2}^{Z_c}|^2 &= 2 \, |\mathcal{H}_{++}^{Z_c}|^2 + |\mathcal{H}_{00}^{Z_c}|^2 \approx 3 \, |\mathcal{H}_{++}^{Z_c}|^2 \end{split}$$

- :. the effects of the kinematical constraints can be ignored!
- pole contribution: $t = m_z^2$ and $u = m_z^2$ in the numerators.

Motivation & Goals 🛛 🕞 F		$(2S) \pi' \pi$		
	000			

 $\psi(2S) \pi^+\pi^-$

$$\chi^2_{\it red} = 1.01$$

- Total
- -- Only Z_c
- -- Only $\pi\pi$ -FSI
- a(q²) and b(q²) are complex numbers
- Global normalization: N(q², F_{γ*Z_cπ}, C_{Z_cψπ})

$$\chi^2_{\it red} = 1.16$$

Data is normalized using the total cross section

0 0		

(4) $J/\psi \ \pi^+\pi^-$

$$\begin{bmatrix} \mathcal{H}_{\psi\pi\pi} \\ \mathcal{H}_{\psi KK} \end{bmatrix} = \begin{bmatrix} \mathcal{H}^{Z_c}(s,t) \\ \mathcal{H}^{Z_c}(s,t) \end{bmatrix} + \underbrace{\begin{bmatrix} \Omega_{\pi\pi,\pi\pi} & \Omega_{\pi\pi,K\bar{K}} \\ \Omega_{K\bar{K},\pi\pi} & \Omega_{K\bar{K},K\bar{K}} \end{bmatrix}}_{\bar{\Omega}} \left\{ \begin{bmatrix} a+b\,s \\ c+d\,s \end{bmatrix} - \frac{s^2}{\pi} \int_{4m_{\pi}^2}^{\infty} \frac{ds'}{s'^2} \frac{\text{Disc}\,(\bar{\Omega})^{-1}(s')}{s'-s} \begin{bmatrix} h_{Z_c}^{(0)}(s') \\ h_{Z_c}^{(0)}(s') \end{bmatrix} \right\}$$

• For q = 4.26(4.23) GeV, $\gamma^*(q) \to K Z_c^{(s)}$ and $Z_c^{(s)} \to J/\psi K$ would constrain the $Z_c^{(s)}$ mass:

$$3.59 < m_{Z_{2}^{(s)}} < 3.77(3.74) \text{ GeV}$$

 $Z_c^{(s)}(3985)$ recently observed in *BESIII PRL (2021)*

$$\begin{bmatrix} \mathcal{H}_{\psi\pi\pi}\\ \mathcal{H}_{\psi\kappa\kappa} \end{bmatrix} = \begin{bmatrix} \mathcal{H}^{Z_c}(s,t)\\ \mathcal{H}^{\mathcal{T}}(s,t) \end{bmatrix} + \underbrace{\begin{bmatrix} \Omega_{\pi\pi,\pi\pi} & \Omega_{\pi\pi,\kappa\bar{\kappa}}\\ \Omega_{\kappa\bar{\kappa},\pi\pi} & \Omega_{\kappa\bar{\kappa},\kappa\bar{\kappa}} \end{bmatrix}}_{\bar{\Omega}} \underbrace{\begin{bmatrix} a+bs\\ c+ds \end{bmatrix}}_{4m_{\pi}^2} - \frac{s^2}{\pi} \int_{4m_{\pi}^2} \frac{ds'}{s'-s} \frac{\text{Disc}(\bar{\Omega})^{-1}(s')}{s'-s} \begin{bmatrix} h_{Z_c}^{(0)}(s')\\ h_{Z_c}^{(0)}(s') \end{bmatrix} \underbrace{\}$$

D-wave Rescattering:

$$\mathcal{H}_{\psi\pi\pi}^{(2)} = 5P_2(z)\gamma(s)\Omega^{(2)}(s) \left\{ e - \frac{s}{\pi} \int_{4m_{\pi}^2}^{\infty} \frac{ds'}{s'} \frac{\mathsf{Disc}\,(\Omega^{(2)})^{-1}(s')}{s'-s} \frac{h_{Z_c}^{(2)}(s')}{\gamma(s')} \right\}$$

Centrifugal Barrier Factor: $\gamma(s) \equiv (s - 4m_{\pi}^2)(s - (q - m_{\psi})^2)$

		Perspectives ●0	

Perspectives

			Perspectives ○●	
Perspectives				

$\mathrm{e^+e^-} ightarrow \mathrm{h_c} \, \pi^+ \, \pi^-$ (Preliminary)

- Collaboration with BESIII;
- Extend the formalism for the h_c -case, with quantum number 1^{+-} ; \square
- Simultaneous description of h_cπ and ππ invariant mass distributions;
- Not only $Z_c(4020)$, but also $Z_c(3900)$ as intermediate states; \square
- Study of the possible quantum numbers of $Z_c(4020)$; \Box
- Determination of the mass and width of $Z_c(4020)$. \Box

		Summary ●○○

6 Summary

					Summary ○●○	
Summary						

${ m e^+e^-} ightarrow \psi({ m 2S})\,\pi^+\,\pi^-$

- The exotic state Z_c(3900) plays an important role to explain the invariant mass distribution at both q = 4.226 and q = 4.258 GeV;
- The $\pi\pi$ -FSI is the main mechanism to describe the $\pi\pi$ -line shape for all the energies.

${\rm e^+e^-} \rightarrow {\rm J}/\psi \, \pi^+ \, \pi^-$

- The exotic state $Z_c(3900)$ and the couple channel FSI are essential to describe the invariant mass distributions;
- The reactions $e^+e^- \rightarrow J/\psi \pi^+\pi^-$ and $e^+e^- \rightarrow J/\psi K^+K^-$ have to be analyzed simultaneously in order to constrain the parameters.

 $\psi(2S) \pi^{+}\pi^{-}$

 $J/\psi \pi^{+}\pi^{-}$

Perspectives

Summary 000

Thank you for listening!

Appendix

• The pions interaction amplitude can be written in terms of the phase shift:

$$t^*_{\pi\pi}(s)=rac{e^{-i\delta_{\pi\pi}(s)}\sin\delta_{\pi\pi}(s)}{
ho(s)}$$

- The $\pi\pi$ -rescattering can be parametrized in terms of Ω : Disc $\Omega(s) = t_{\pi\pi}^*(s)\rho(s)\Omega(s)$
- Therefore, we can use the $\delta_{\pi\pi}(s)$ through the Omnès Function:

$$\Omega(s) = exp \left[rac{s}{\pi} \int \limits_{4m_\pi^2}^\infty rac{ds'}{s'} rac{\delta_{\pi\pi}(s')}{s'-s}
ight]$$

Omnès, Nuovo Cim. (1958) Muskhelishvili, (1953)

Dispersion Relation

 Assuming no kinematic constrains, we look for a solution in terms of the Omnès function:

$$h^R_{\lambda_1\lambda_2}(s) = \Omega(s) \ G_{\lambda_1\lambda_2}(s)$$

• The unitarity relation for the Omnès function is

$$\mathsf{Disc}\,\Omega(s) = t^*_{\pi\pi}(s)\,\rho(s)\,\Omega(s)\,\theta(s > 4m^2_{\pi})$$

• Since Disc $h_{\lambda_1\lambda_2}(s) = \text{Disc } h_{\lambda_1\lambda_2}^R(s)$, one can write down a DR for $G_{\lambda_1\lambda_2}$:

$$\mathcal{G}_{\lambda_1\lambda_2} = -\int\limits_{4m_\pi^2}^\infty rac{ds'}{\pi} rac{ ext{Disc}\left(\Omega^{-1}(s')
ight)h_{\lambda_1\lambda_2}^{\mathsf{L}}(s')}{s'-s}$$

Helicity Amplitude with Rescattering

$$\mathcal{H}_{\lambda_1\lambda_2}(s,t) = \mathcal{H}_{\lambda_1\lambda_2}^{(Z_c)}(s,t) + \Omega(s) \left\{ a + b \, s - rac{s^2}{\pi} \int\limits_{4m_\pi^2}^\infty rac{ds'}{s'^2} rac{\mathrm{Disc}\left(\Omega^{-1}(s')\right) h_{\lambda_1\lambda_2}^{L}(s')}{s' - s}
ight\}$$

• 2 subtraction constants to reduce the sensitive to high energy.

Anomalous Threshold

- Depending on the kinematics new nonphysical singularities might appear $(q^2 > 2m_{\pi}^2 + 2m_z^2 m_{\psi}^2).$
- The anomalous piece that emerges because the anomalous branch point moves onto the first Riemann sheet distorting the integration contour. Effectively, that can be written as

$$\int_{-1}^{1} \frac{dz}{t - m_z^2} = \int_{-1}^{1} \frac{dz}{u - m_z^2} = -\frac{2}{k(s)} \log\left(\frac{X(s) + 1}{X(s) - 1}\right) - i\frac{4\pi}{k(s)}\theta(s_- < s < s_a)$$

- $s_a = 2m_{\pi}^2 + m_{\psi}^2 + q^2 2m_z^2$ is the position where the argument of the logarithm changes sign.
- Analytical continuation: $q
 ightarrow q + i\epsilon$

Cross-Check

• Comparison of the DR with the scalar triangle loop calculated via traditional method.

S. Mandelstam, PRL (1960); W. Lucha et al, PRD (2007); M. Hoferichter et al, Mod. Phys. Conf. Ser. (2014)

$\pi\pi$ FSI: Single Channel

Modified-IAM for (J=0):

$$t_{\pi\pi}(s) = rac{|t_{ ext{LO}}(s)|^2}{t_{ ext{LO}}(s) - t_{ ext{NLO}}(s) + A^{ ext{mIAM}}(s)}$$

- Correct positions of Adler zeros;
- Consistent description of $f_0(500)$.

Omnès Function
$$\Omega(s) = exp\left[\frac{s}{\pi} \int_{4m_{\pi}^2}^{\infty} \frac{ds'}{s'} \frac{\delta_{\pi\pi}(s')}{s'-s}\right]$$

GomezNicola et al. PRD (2008)

Inverse Amplitude Method

partial wave elastic unitarity

$$\mathsf{Im}[t_{\pi\pi}(s)] =
ho_{\pi\pi}(s) \left|t_{\pi\pi}(s)
ight|^2 \implies \mathsf{Im}\left[rac{1}{t_{\pi\pi}(s)}
ight] = -
ho_{\pi\pi}(s)$$

• The ChPT amplitude only satisfy the unitarity condition perturbatively:

 $Im[t_{LO}] = 0$; $Im[t_{NLO}] = \rho_{\pi\pi}(s) |t_{LO}(s)|^2$ with $t_{\pi\pi} = t_{LO} + t_{NLO} + \cdots$

• One can write down a dispersion relation for the ChPT amplitudes as

$$t_{\rm LO}(s) = \sum_{l=0}^{k} a_l s^l; \qquad t_{\rm NLO}(s) = \sum_{l=0}^{k} b_l s^l + \frac{s^k}{\pi} \int_{4m_{\pi}^2}^{\infty} \frac{ds^\prime}{s^{\prime k}} \frac{\rm Im\,[t_{\rm NLO}]}{s^\prime - s - i\epsilon} + I_{LC}\,[t_{\rm NLO}]$$

• Same analytic structure for t and t^{-1} : $G(s) \equiv t_{LO}^2/t_{\pi\pi} \implies \text{Im}[G(s)] = -\text{Im}[t_{\text{NLO}}]$

● Thus G(s) ≃ t_{LO}(s) − t_{NLO}(s), considering that I_{LC} [G(s)] = −I_{LC} [t_{NLO}] and ignoring pole contributions:

$$t_{\pi\pi}(s)\simeq rac{|t_{ ext{LO}}(s)|^2}{t_{ ext{LO}}(s)-t_{ ext{NLO}}(s)}$$

Truong, PRL (1988) Dobado & Peláez, PRD (1993)

Inverse Amplitude Method

• Spurious poles emerges below threshold for the scalar waves (J=0), thus to reproduce correctly the Adlers zeros the IAM must be modified as

$$t_{\pi\pi}(s) = rac{|t_{ ext{LO}}(s)|^2}{t_{ ext{LO}}(s) - t_{ ext{NLO}}(s) + A^{ ext{mIAM}}(s)}$$
 GomezNicola et al.

with the adler zero $s_A = s_{LO} + s_{NLO} + \mathcal{O}(p^6)$ and $t_{LO}(s_{LO} + s_{NLO}) + t_{NLO}(s_{LO} + s_{NLO}) = 0$

No Z_c Intermediate State

$$\chi^2_{red} = 0.83$$

- No intermediate state is required;
- Two real subtraction constants and the $\pi\pi$ Omnès function describe well the data;
- The left-hand cuts are dominated by the contact interation or possible D-meson loops (absorbed in the subtraction constants).

$Z_c(4016)$ or $Z_c(4020)$?

Predictions for $e^+e^- ightarrow {\sf J}/\psi~{\sf K}^+{\sf K}^-$

The experimental cross section σ^{BES} is used to constrain the fits;
K⁺K⁻ predictions are given by KK̄, ππ and KK̄, KK̄ final state interactions.

$\pi\pi$, KK FSI: Couple Channel

