

Contribution ID: 41 Type: Parallel

Study the nature of $f_0(980)$ and $a_0(980)$

Monday, 17 May 2021 18:05 (20 minutes)

In our work, we use the coupled channel approach to revisite the interaction of $K\bar{K}$ and its coupled channel, where the states $f_0(980)$ and $a_0(980)$ were dynamically reproduced in the interaction of isospin I=0 and I=1 sectors, respectively. In our results, the states of σ and $f_0(980)$ can be dynamically reproduced stably with varying cutoffs both in the coupled channel and the single channel cases. We find that the $\pi\eta$ components is much important in the coupled channel interactions to dynamically reproduce the $a_0(980)$ state, which means that $a_0(980)$ state can not be a pure $K\bar{K}$ molecular state. Furthermore, we also calculated their radii, the compositeness, the wave functions and their productions in the final state interactions, aiming at looking inside their molecular nature.

Collaboration

Primary author: XIAO, Chu-Wen (Central South University)

Co-authors: AHMED, Hiwa A.; WANG, Zhongyu; SUN, Zhi-Feng

Presenter: XIAO, Chu-Wen (Central South University)

Session Classification: Parallel Session C1