

MESON2021

Study the nature of $f_0(980)$ and $a_0(980)$

Chu-Wen Xiao

Central South University, Changsha, China

Collaborators: Hiwa A. Ahmed, Zhong-Yu Wang, Zhi-Feng Sun

Kraków, Poland, May 17-20, 2021

Outline

Introduction
 Formalism
 Results
 Summary

- H.-X. Chen, W. Chen, X. Liu and S.-L. Zhu, Phys. Rept. 639 (2016) 1.
- A. Esposito, A. Pilloni and A. D. Polosa, Phys. Rept. 668 (2016) 1.
- F.-K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao and B.-S. Zou, **Rev. Mod. Phys. 90** (2018) 0115004.
- S. L. Olsen, T. Skwarnicki and D. Zieminska, **Rev. Mod. Phys. 90** (2018) 0115003.
- C. Z. Yuan, Int. J. Mod. Phys. A 33,1830018 (2018).
- Y. R. Liu, H. X. Chen, W. Chen, X. Liu and S. L. Zhu, **Prog. Part. Nucl. Phys. 107**, 237 (2019).
- N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C. P. Shen, C. E. Thomas, A. Vairo and C. Z. Yuan, **Phys. Rept. 873** (2020) 1.

Long issue for their nature: $f_0(980) a_0(980)$

Normal qqbar state

- D. Morgan, Phys. Lett. 51B, 71 (1974).
- D. Morgan and M. R. Pennington, Z. Phys. C 48, 623 (1990).
- N. A. Tornqvist and M. Roos, Phys. Rev. Lett. 76, 1575 (1996).

Multiquark state

R. L. Jaffe, Phys. Rev. D 15, 267 (1977). N. N. Achasov, Nucl. Phys. A 728, 425 (2003). S.S.Agaev, K.Aziziand, H.Sundu, Phys.Lett.B781,279(2018).

KKbar molecules

J. D. Weinstein and N. Isgur, Phys. Rev. Lett. 48, 659 (1982).
G. Janssen, B. C. Pearce, K. Holinde and J. Speth, Phys. Rev. D 52, 2690 (1995).
J. A. Oller and E. Oset, Nucl. Phys. A 620, 438 (1997).

§2. Formalism

• Chiral Unitary Approach (ChUA): coupled channel approach, solving Bethe-Salpeter (BS) equations.

 $T = V + V G T, T = [1 - V G]^{-1} V$

where V matrix (potentials) can be evaluated from chiral Lagrangians.

J. A. Oller and E. Oset, Nucl. Phys. A 620 (1997) 438
E. Oset and A. Ramos, Nucl. Phys. A 635 (1998) 99
J. A. Oller and U. G. Meißner, Phys. Lett. B 500 (2001) 263

G is a diagonal matrix with the loop functions of each channels:

$$G_{ll}(s) = i \int \frac{d^4q}{(2\pi)^4} \frac{1}{(P-q)^2 - m_{l1}^2 + i\varepsilon} \frac{1}{q^2 - m_{l2}^2 + i\varepsilon}$$

The coupled channel scattering amplitudes **T matrix** satisfy the unitary :

Im
$$T_{ij} = T_{in} \sigma_{nn} T_{nj}^*$$

$$\sigma_{nn} \equiv \text{Im } G_{nn} = -\frac{q_{cm}}{8\pi\sqrt{s}}\theta(s - (m_1 + m_2)^2))$$

To search the poles of the resonances, we should extrapolate the scattering amplitudes to the second Riemann sheets:

$$G_{ll}^{II}(s) = G_{ll}^{I}(s) + i \, \frac{q_{cm}}{4\pi\sqrt{s}}$$

To understand more properties of the resonances, we first evaluate the sum rule for the composite state

$$-\sum_{i}g_{i}^{2}\left[\frac{dG_{i}}{ds}\right]_{s=s_{pole}} = 1-Z$$

The wave function and the form factor are given by

$$\begin{split} \phi(\vec{r}) &= \frac{1}{(2\pi)^{3/2}} \frac{4\pi}{r} \frac{1}{C} \int_{q_{\max}} p dp \sin(pr) \times \frac{\Theta\left(q_{\max} - |\vec{p}|\right)}{E - \omega_1(\vec{p}) - \omega_2(\vec{p})} \frac{m_V^2}{\vec{p}^2 + m_V^2} \\ F(\vec{q}) &= \int d^3 \vec{r} \phi(\vec{r}) \phi^*(\vec{r}) e^{-i\vec{q}' \cdot \vec{r}} \\ &= \int d^3 \vec{p} \frac{\theta(\Lambda - p) \,\theta(\Lambda - |\vec{p} - \vec{q}|)}{[E - \omega_1(\vec{p} - \vec{q}) - \omega_2(\vec{p} - \vec{q})]} \end{split}$$

With the form factor obtained, the radius can be evaluated by

$$\left\langle r^{2}\right\rangle = -6\left[\frac{\mathrm{d}F(q)}{\mathrm{d}q^{2}}\right]_{q^{2}=0}$$

Or one can use the one from the tail of the wave functions

$$\left\langle r^2 \right\rangle_i = rac{-g_i^2 \left[rac{\mathrm{d}G_i(s)}{\mathrm{d}s}
ight]_{s=s_{pole}}}{4\mu_i B_{\mathrm{E},i}}$$
 T. Sekihara and T. Hyodo, Planck Rev. C 87, 045202 (2013).

nys.

1) The results of the coupled channel interaction

The central value of the cutoff $q_{max} = 931 \text{ MeV}$

which is taken from

CWX, U.-G. Meißner and J. A. Oller, Eur. Phys. J. A 56, 23 (2020).

Pole trajectories for varying the cutoff

9

Couplings and the conpositeness I = 0 sector

$q_{max} = 931 { m ~MeV}$	$g_{K\bar{K}}g_{K\bar{K}}({ m GeV}^2)$	$ g_{Kar{K}} ({ m GeV})$	$g_{\pi\pi}g_{\pi\pi}({ m GeV}^2)$	$ g_{\pi\pi} ({ m GeV})$
$\sigma: 469.23 + 199.70i$	-1.05 + 1.72i	1.42	-3.49 + 8.20i	2.98
$f_0: 991.17 + 13.45i$	10.92 - 10.91i	3.92	-1.76 + 0.70i	1.37
$q_{max} = 1080 { m ~MeV}$				
$\sigma: 469.28 + 180.46i$	-0.80 + 1.86i	1.42	-2.0 + 8.28i	2.92
$f_0: 982.13 + 21.67i$	16.15 - 10.55i	4.39	-2.34 + 1.11i	1.60

$q_{max} = 931 \mathrm{MeV}$	$(1-Z)_{Kar{K}}$	$ (1-Z)_{Kar{K}} $	$(1-Z)_{\pi\pi}$	$ (1-Z)_{\pi\pi} $
$\sigma: 469.23 + 199.70i$	-0.01 + 0.01i	0.01	-0.13 - 0.37i	0.40
$f_0: 991.17 + 13.45i$	0.79 + 0.12i	0.80	0.02 - 0.01i	0.02
$q_{max} = 1080 { m ~MeV}$				
$\sigma: 469.28 + 180.46i$	-0.00 + 0.01i	0.01	-0.16 - 0.36i	0.39
$f_0: 982.13 + 21.67i$	0.70 + 0.11i	0.70	0.02 - 0.01i	0.02

10

I = 1 sector

$q_{max}=931{ m MeV}$	$g_{Kar{K}}g_{Kar{K}}({ m GeV}^2)$	$ g_{Kar{K}} ({ m GeV})$	$g_{\pi\eta}g_{\pi\eta}({ m GeV}^2)$	$ g_{\pi\eta} ({ m GeV})$
$a_0: 1002.90 + 56.68i$	24.17 - 9.22i	5.08	10.30 + 5.71i	3.43
$q_{max} = 1080 { m MeV}$			27	
$a_0: 974.50 + 57.31i$	21.83 - 3.28i	4.78	8.16 + 5.20i	3.11

$q_{max} = 931 { m MeV}$	$(1-Z)_{K\bar{K}}$	$ (1-Z)_{Kar{K}} $	$(1-Z)_{\pi\eta}$	$ (1-Z)_{\pi\eta} $
$a_0: 1002.90 + 56.68i$	0.37 + 0.41i	0.55	-0.09 - 0.13i	0.16
$q_{max} = 1080 { m ~MeV}$				
$a_0: 974.50 + 57.31i$	0.34 + 0.29i	0.45	-0.07 - 0.12i	0.14

The radii of states

Resonances	$q_{max} = 931 { m MeV}$	$\left \sqrt{\langle r^2 angle} ight $	$q_{max} = 1080 { m ~MeV}$	$ \sqrt{\langle r^2 angle} $
f_0	$1.42 + 1.10i \mathrm{fm}$	1.80 fm	$1.31+0.62i~{\rm fm}$	$1.45~\mathrm{fm}$
σ	$0.68 + 0.005i { m fm}$	$0.68~\mathrm{fm}$	$0.63 + 0.04i~{\rm fm}$	$0.63~{ m fm}$
a_0	0.83 + 0.44i fm	0.94 fm	$0.96+0.35i~{\rm fm}$	$1.03~{ m fm}$

Resonances	$q_{max} = 931 { m ~MeV}$	$ \sqrt{\langle r^2 angle} $	$q_{max} = 1080 { m ~MeV}$	$ \sqrt{\langle r^2 angle} $
f_0	$16.32 + 1.20i { m fm}$	$16.36 \mathrm{~fm}$	$1.73 \pm 0.13i~{\rm fm}$	$1.73~\mathrm{fm}$
σ	0.43 + 0.31i fm	$0.54~{ m fm}$	0.44 + 0.29i fm	$0.53~{ m fm}$
a_0	$0.56-1.25i~{\rm fm}$	1.37 fm	$0.96+0.36i~{\rm fm}$	1.02 fm

2) The results of the single channel interaction

Pole trajectories for varying the cutoff

The potential of KKbar is too weak to create a pole in I=1. 13

Couplings and the conpositeness

$q_{max}=931~{\rm MeV}$	$g_{K\bar{K}}g_{K\bar{K}}({\rm GeV^2})$	$ g_{Kar{K}} ({ m GeV})$	$g_{\pi\pi}g_{\pi\pi}({ m GeV}^2)$	$ g_{\pi\pi} ({ m GeV})$
$\sigma: 466.81 + 212.21i$	0	0	-4.41 + 7.77i	2.98
$f_0(980): 948.62$	26.4	5.13	0	0
$q_{max} = 1080 { m ~MeV}$				
$\sigma: 468.213 + 195.8i$	0	0	-3.20 + 8.05i	2.942
$f_0(980): 923.77$	29.8	5.45	0	0

$q_{max} = 931~{ m MeV}$	$(1-Z)_{K\bar{K}}$	$ (1-Z)_{K\bar{K}} $	$(1-Z)_{\pi\pi}$	$ (1-Z)_{\pi\pi} $
$\sigma: 467.13 + 209.968i$	0	0	-0.11 - 0.37i	0.39
$f_0(980): 948.62$	0.62	0.62	0	0
$q_{max} = 1080 { m MeV}$				
$\sigma: 468.213 + 195.8i$	0	0	-0.13 - 0.36i	0.386
$f_0(980): 923.77$	0.52	0.52	0	0

14

The radii of states

Resonances	$q_{max} = 931 { m MeV}$	$ \sqrt{\langle r^2 angle} $	$q_{max} = 1080 { m ~MeV}$	$ \sqrt{\langle r^2 angle} $
σ	$0.69 + 0.007 \; i \; { m fm}$	0.69 fm	$0.64 + 0.03 \ i \ { m fm}$	$0.64~\mathrm{fm}$
$f_0(980)$	$1.29~\mathrm{fm}$	1.29 fm	1.11 fm	1.11 fm

Resonances	$q_{max} = 931 { m ~MeV}$	$ \sqrt{\langle r^2 angle} $	$q_{max} = 1080 { m ~MeV}$	$ \sqrt{\langle r^2 angle} $
σ	$0.43 + 0.32 \ i \ { m fm}$	$0.54~{ m fm}$	$0.43 + 0.30 \ i \ { m fm}$	$0.53~{ m fm}$
$f_0(980)$	$0.75~{ m fm}$	$0.75~\mathrm{fm}$	$0.55~{ m fm}$	$0.55~{ m fm}$

H. A. Ahmed and CWX, Phys. Rev. D 101, 094034 (2020).

3) The results of the final state interaction

Branching ratios	Without $\eta\eta$ channel	With $\eta\eta$ channel	Exp.
${ m Br}(B^0 o \phi f_0(980))$	$(5.21 \pm 0.98^{+4.40}_{-1.72}) \times 10^{-10}$	$(8.19 \pm 1.54^{+5.12}_{-2.34}) \times 10^{-10}$	$< 3.8 \times 10^{-7}$
${\rm Br}(B^0 \to \phi f_0(500))$	$(6.89 \pm 1.29^{+0.27}_{-0.23}) \times 10^{-9}$	$(7.97 \pm 1.49^{+0.34}_{-0.30}) \times 10^{-9}$	_ 1

Ratios	Without $\eta\eta$ channel	With $\eta\eta$ channel
$\frac{\text{Br}(B^0 \to \phi f_0(980))}{\text{Br}(B^0 \to J/\psi f_0(980))}$	$(9.28 \pm 3.05^{+0.26}_{-0.18}) imes 10^{-4}$	$(9.26 \pm 3.04^{+0.17}_{-0.15}) \times 10^{-4}$
$\frac{\text{Br}(B^0 \to \phi f_0(500))}{\text{Br}(B^0 \to J/\psi f_0(500))}$	$(7.87 \pm 2.58^{+0.03}_{-0.03}) \times 10^{-4}$	$(7.88 \pm 2.59^{+0.04}_{-0.03}) \times 10^{-4}$

$$\begin{split} R_{1}^{th} &= \frac{\Gamma_{B^{0} \to \phi \rho^{0}}}{\Gamma_{B^{0}_{s} \to \phi \phi}} = \frac{1}{N_{c}^{2}} \frac{1}{4} \frac{1}{2} \left| \frac{V_{ub} V_{ud} + V_{cb} V_{cd}}{V_{ub} V_{us} + V_{cb} V_{cs}} \right|^{2} \frac{m_{B^{0}_{s}}^{2}}{m_{B^{0}}^{2}} \frac{p_{\rho^{0}}}{p_{\phi}} = 6.70 \times 10^{-4}, \\ R_{2}^{th} &= \frac{\Gamma_{B^{0} \to \phi \omega}}{\Gamma_{B^{0}_{s} \to \phi \phi}} = \frac{1}{N_{c}^{2}} \frac{1}{4} \frac{1}{2} \left| \frac{V_{ub} V_{ud} + V_{cb} V_{cd}}{V_{ub} V_{us} + V_{cb} V_{cs}} \right|^{2} \frac{m_{B^{0}_{s}}^{2}}{m_{B^{0}}^{2}} \frac{p_{\omega}}{p_{\phi}} = 6.70 \times 10^{-4}, \\ R_{3}^{th} &= \frac{\Gamma_{B^{0}_{s} \to \phi \bar{\kappa}^{*0}}}{\Gamma_{B^{0}_{s} \to \phi \phi}} = \left| \frac{V_{ub} V_{ud} + V_{cb} V_{cd}}{V_{ub} V_{us} + V_{cb} V_{cs}} \right|^{2} \frac{p_{\bar{K}^{*0}}}{p_{\phi}} = 4.72 \times 10^{-2}. \end{split}$$

$$R_3^{exp} = \frac{\text{Br}(B_s^0 \to \phi \bar{K}^{*0})}{\text{Br}(B_s^0 \to \phi \phi)} = \frac{(1.14 \pm 0.30) \times 10^{-6}}{(1.87 \pm 0.15) \times 10^{-5}} = (6.09 \pm 2.09) \times 10^{-2}$$

$$Br(B^{0} \to \phi \rho^{0}) = \frac{\Gamma_{B^{0} \to \phi \rho^{0}}}{\Gamma_{B}} = (1.25 \pm 0.10) \times 10^{-8},$$

$$Br(B^{0} \to \phi \omega) = \frac{\Gamma_{B^{0} \to \phi \omega}}{\Gamma_{B}} = (1.25 \pm 0.10) \times 10^{-8},$$

$$Br(B^{0}_{s} \to \phi \bar{K}^{*0}) = \frac{\Gamma_{B^{0}_{s} \to \phi \bar{K}^{*0}}}{\Gamma_{B_{s}}} = (8.83 \pm 0.71) \times 10^{-7},$$

$$\begin{aligned} & \text{Br}(B^0 \to \phi \rho^0) < 3.3 \times 10^{-7}, \\ & \text{Br}(B^0 \to \phi \omega) < 7 \times 10^{-7}, \\ & \text{Br}(B^0_s \to \phi \bar{K}^{*0}) = (1.14 \pm 0.30) \times 10^{-6}. \end{aligned}$$

H. A. Ahmed, Z. Y. Wang, Z. F. Sun and *CWX*, arXiv: 2011.08758.

COUTH

PDG

§4. Summary

- **The** $f_0(980)$ states is mainly a $K\bar{K}$ bound state.
- \square The σ state is a resonance of $\pi\pi$.
- The $a_0(980)$ state is a loose bound state of $K\bar{K}$, with the significant component of $\pi\eta$.
- □ These conclusions can be further confirmed in the final interaction results of $B_{(s)}^0 \rightarrow \phi \pi^+ \pi^-$ decays.

Hope that our predictions can be tested in the future experiments!

谢谢大家!

Thanks for your attention!

