

Nature of the LHCb pentaquarks from an analysis of the J/ψ p spectrum

Vadim Baru

Institut für Theoretische Physik II, Ruhr-Universität Bochum Germany

ITEP, Moscow, Russia

16th International Workshop on Meson Physics

18 May 2021

in collaboration with

M. Du, F.-K. Guo, C. Hanhart, U.-G. Meißner, J.A. Oller and Q. Wang

PRL 14, 072001 (2020) and arXiv: 2102.07159 (2021)

P_c 's from $\Lambda_b \rightarrow K J/\psi p$

Pentaquarks as hadronic molecules

Disclaimer: I will not talk about Pc's as compact states, hadrocharmonia, triangle mechanisms... Brambilla et al Phys.Rept. 873 (2020) 1 $\Sigma_c^+ \overline{D}^0$ $\Sigma_{a}^{+}\overline{D}^{*0}$ - All P_c's reside near S-wave hadronic thresholds: 1200 $P_{c}(4312)$ — near $\Sigma_{c}D$, $P_{c}(4440)$ and $P_{c}(4457)$ — near $\Sigma_{c}D^{*}$ **LHCb** data Weighted candidates/(2 MeV) otal fit 1000 background \implies Hint for a molecular scenario 800 600 Implications of QCD symmetries: Λ P_c(4457) ?_(4440)⁺ P_c(4312) -chiral symmetry: one- and multi-pion exchanges 200 —heavy-quark spin symmetry (HQSS): there must be seven $\Sigma_c^{(*)}\overline{D}^{(*)}$ states 4350 4400 4450 4500 4200 4300 4250 4550 $m_{J/\psi p}$ [MeV] LHCb, PRL 122 222001 (2019) $\mathcal{L}_{\rm LO} = -C_a \, S_{ab}^{\dagger} \cdot S_{ba} \langle \bar{H}_c^{\dagger} \bar{H}_c \rangle - C_b \, i \epsilon_{jik} S_{ab}^{j\dagger} S_{ba}^k \langle \bar{H}_c^{\dagger} \sigma^i \bar{H}_c \rangle$

First predictions for spin partners using masses of P_c(4312), Pc(4440) and Pc(4457)
 as input and neglecting coupled-channels
 Liu et al, PRL 122 242001 (2019)

spin-spin

central

related works: Xiao et al. PRD 100 014021 (2019), Sakai et al. PRD 100 074007 (2019), ...

This Talk is about

our works: PRL 14, 072001 (2020) and arXiv: 2102.07159 (2021)

• A coupled-channel analysis of the LHCb spectra using an EFT approach

Fixing LECs from data and not from Breit-Wigner masses, as done before \implies extracting poles and residues

► Parameter-free testable predictions for HQSS partners and line shapes in $\Lambda_b \to K\Sigma^{(*)} \overline{D}^{(*)}$ and $\Lambda_b \to K\eta_c p$ first data by LHCb for $\Lambda_b \to K\eta_c p$: PRD 102, 112012 (2020) and for $\Lambda_b \to K\Lambda_c D$: Piucchi phd thesis (2019)

The role of one-pion exchange

Chiral EFT approach at low energies

• Elastic coupled-channel $\sum_{c}^{(*)} \overline{D}^{(*)}$ potential to a given order in Q/ Λ_h

typical soft scale Q is quite large because of coupled-channels $\Lambda_h \sim 1 \,\mathrm{GeV}$ $p_{\rm typ} = \sqrt{m\,\delta}$ m_{π} $\eta_c, J/\Psi$ $V_{\rm LO}^{\rm eff}$ ++ π p 2 S-S wave LECs at $O(Q^0)$ HQSS: Long range: OPE **Imaginary part** 1 S-D wave LEC at O(Q²) from inelastic channels

If $\Sigma_c^{(*)}\overline{D}^{(*)} \to \Lambda_c\overline{D}^{(*)}$ are included, one more S-S and one S-D LECs plus OPE M. Du et al. arXiv: 2102.07159 (2021)

Formalism: production and inelastic channels

 — No direct inelastic transitions
 — via couplings to elastic channels

$$T_{\alpha\beta} = V_{\alpha\beta}^{\text{eff}} - \sum_{\gamma} \int \frac{d^3q}{(2\pi)^3} V_{\alpha\gamma}^{\text{eff}} G_{\gamma} T_{\gamma\beta}$$

Green function:

— Dynamical widths of $\Sigma_c^{(*)}$

$$G_{\beta}(E, \boldsymbol{q}) = \frac{m_{\Sigma_{c}^{(*)}} m_{D^{(*)}}}{E_{\Sigma_{c}^{(*)}}(\boldsymbol{q}) E_{D^{(*)}}(\boldsymbol{q})} \xrightarrow{1}{E_{\Sigma_{c}^{(*)}}(\boldsymbol{q}) - E - \frac{\tilde{\Sigma}_{R}(s)}{2E_{\Sigma_{c}^{(*)}}(\boldsymbol{q})}} \xrightarrow{\Sigma_{c}^{(*)}}{\frac{\Sigma_{c}^{(*)}}{\pi}}$$

generates $\overline{D}\Lambda_c\pi$ cut

"Contact" Fits to three sets of LHCb data

\Rightarrow Consistent values for the Pc's poles from all fits

Poles and quantum numbers:

			solution A		solution B
	thr. $([MeV])$	J^P	Pole [MeV]	J^P	Pole [MeV]
$P_{c}(4312)$	$\Sigma_c \bar{D}$ (4321.6)	$\frac{1}{2}^{-}$	4314(1) - 4(1)i	$\frac{1}{2}^{-}$	4312(2) - 4(2)i
$P_c(4380)$	$\Sigma_c^* \bar{D}$ (4386.2)	$\frac{3}{2}^{-}$	4377(1) - 7(1)i	$\frac{3}{2}^{-}$	4375(2) - 6(1)i
$P_{c}(4440)$	$\Sigma_c \bar{D}^*$ (4462.1)	$\frac{1}{2}^{-}$	4440(1) - 9(2)i	$\frac{3}{2}^{-}$	4441(3) - 5(2)i
$P_{c}(4457)$	$\Sigma_c \bar{D}^* (4462.1)$	$\left \frac{3}{2}\right $	4458(2) - 3(1)i	$\left \frac{1}{2}^{-}\right $	4462(4) - 5(3)i
P_c	$\Sigma_c^* \bar{D}^*$ (4526.7)	$\frac{1}{2}^{-}$	4498(2) - 9(3)i	$\left \frac{1}{2}\right $	4526(3) - 9(2)i
P_c	$\Sigma_c^* \bar{D}^*$ (4526.7)	$\frac{3}{2}^{-}$	4510(2) - 14(3)i	$\frac{3}{2}^{-}$	4521(2) - 12(3)i
P_c	$\Sigma_c^* \bar{D}^* (4526.7)$	$\frac{5}{2}^{-}$	4525(2) - 9(3)i	$\frac{5}{2}^{-}$	4501(3) - 6(4)i

Du et al. PRL 124, 072001 (2020) and arXiv:2102.07159

 P_c (4312), P_c (4440), P_c (4457) are well understood as $\Sigma_c D$, $\Sigma_c D^*$ and $\Sigma_c D^*$ quasi-bound states, respectively

- Two fits with equal χ^2 yield:

Pc	(4440)	P _c (4457)		
Fit A:	1/2-	3/2-		
Fit B:	3/2-	1/2-		

• A narrow Pc(4380) state predicted as a Σ_c^* D 3/2⁻ molecule is seen in data

Σ_c*D* states are not seen yet, their production rate is suppressed

Predictions for $\Lambda_b \to K\Sigma^{(*)}D^{(*)}$ and $\Lambda_b \to K\eta_c p$

scheme I = contact

Very different predictions for fits A and B

⇒ data in these channels will clearly distinguish between the two fits

But what happens if we include pions?

But what happens if we include pions?

- Renormalizability require S-wave-to-D-wave contact term to appear together with OPE
- completely consistent with similar analyses of Zb(10610)/Zb(10650)

our works: PRD 98,074023 (2018), PRD 99,094013 (2019)

- Qualitatively similar results: the position of peaks is the same
- The inclusion of OPE has a visible impact on the peaks strength

- Qualitatively different results for $\Sigma_c D$ and $\eta_c p$ in schemes I and II
- $\Sigma_c D: 1/2^- P_c(4440)$ in S-wave in scheme I vs $3/2^- P_c(4457)$ in D-wave in scheme II

- Qualitatively different results for $\Sigma_c D$ and $\eta_c p$ in schemes I and II
- $\Sigma_c D: 1/2^- P_c(4440)$ in S-wave in scheme I vs $3/2^- P_c(4457)$ in D-wave in scheme II

► Data for $\Lambda_b \to K$ final, final = $\Sigma_c^{(*)} \bar{D}^{(*)}$, $\eta_c p$ and $\Lambda_c \bar{D}^{(*)}$ are needed $\implies J/\Psi p$ data alone are not enough to constraint $\Lambda_c \bar{D}^{(*)}$ interactions

- Other data, e.g., $J/\Psi p$ photoproduction: sensitivity to production process