LATTICE QCD RULES OUT SOME PREDICTIONS FOR DEEPLY-BOUND LIGHT-HEAVY TETRAQUARKS

Brian Colquhoun w/ R. J. Hudspith, A. Francis, R. Lewis, K. Maltman

May 19 2021

SCHEMATIC MODEL OF BARYONS AND MESONS

M. GELL-MANN

California Institute of Technology, Pasadena, California

Received 4 January 1964

The existence of tetraquarks and pentaquarks has long been suspected! A simpler and more elegant scheme can be constructed if we allow non-integral values for the charges. We can dispense entirely with the basic baryon b if we assign to the triplet t the following properties: spin $\frac{1}{2}$, $z = -\frac{1}{3}$, and baryon number $\frac{1}{3}$. We then refer to the members $u^{\frac{2}{3}}$, $d^{-\frac{1}{3}}$, and $s^{-\frac{1}{3}}$ of the triplet as "quarks" 6) q and the members of the anti-triplet as anti-quarks \bar{q} . Baryons can now be constructed from quarks by using the combinations (qqq), (qqqqq), etc., while mesons are made out of (q \bar{q}), (qq $q\bar{q}q$), etc. It is assuming that the lowest baryon configuration (qqq) gives just the representations 1, 8, and 10 that have been observed, while the lowest meson configuration (q \bar{q}) similarly gives just 1 and 8.

Diquarks

- \star Idea: diquarks, qq or $ar{q}ar{q}$ pairs
- ★ Not colourless, so not physical.
- ★ But combining two colours is equivalent to the anti-colour of the remaining colour, e.g., $r + b = \bar{g}$

- ★ We are interested in:
 - ▶ light diquarks in a colour $\bar{3}_c$, flavour $\bar{3}_f$ and spin 0 configuration
 - "good light diquark"
 - heavy diquarks in a colour 3_c configuration

The term "good diquark" is of Jaffe's invention, for a nice review: [hep-ph/0409065]

Tetraquarks

We are interested in states with "good light diquarks". Depending on the anti-diquark content and its configuration, we have access to $J^P = 1^+$ or $J^P = 0^+$ states. Expectations:

- deeper binding with lighter light diquarks
- deeper binding with heavier heavy diquarks

But there are many states to explore and contradictory claims from models. Predictions of binding and ruling out states both useful for experimentalists.

Example of model predictions

We discuss model results more completely for all channels in R.J. Hudspith, BC, A. Francis, R. Lewis and K. Maltman Phys. Rev. D 102, 114506 (2020), [2006.14294].

Information from baryons and mesons

- Ordinary baryon and meson spectra can provide constraints for models
- ★ QQ serves as nearly static colour source, like a single Q in a baryon

Numbers from PDG & [1409.0497]

- Baryon spectrum suggests
 "good" light diquarks result in strong attraction.
- ★ Lighter quark mass → stronger attraction

Some lattice details

Note: Upcoming update on doubly-bottom tetraquarks uses multiple pion masses and lattice sizes.

Recent update: Box-Sinks

R. J. Hudspith, BC, A. Francis, R. Lewis, K. Maltman [2006.14294]

Improvement: box-sinks for better overlap with ground states.

$$1.05 - 1.05 -$$

$$S^{B}(x,t) = \frac{1}{N} \sum_{r^{2} \le R^{2}} S(x+r,t)$$

TETRAQUARKS ON THE LATTICE

★ Recent years has seen progress in lattice QCD calculations of tetraquarks with $J^P = 1^+$

Static bb potentials:

- P. Bicudo & M. Wagner [1209.6274]
- o Z. S. Brown & K. Orginos [1210.1953]
- o P. Bicudo, J. Scheunert & M. Wagner [1612.02758]
- ▶ NRQCD $\overline{b}\overline{b}$:
 - o A. Francis, R. J. Hudspith, R. Lewis, K. Maltman [1607.05214]
 - o P. Junnarkar, N. Mathur & M. Padmanath [1810.12285]
 - o L. Leskovec, S. Meinel, M. Pflaumer & M. Wagner [1904.04197]

▶ RHQ & NRQCD c̄b,s̄b,sc̄:

○ R. J. Hudspith, BC, A. Francis, R. Lewis, K. Maltman [2006.14294]
 ▶ NRQCD bbbb

o C. Hughes, E. Eichten, C. T. H. Davies [1710.03236]

Fitting our tetraquarks

Construct correlators, $C_{\mathcal{O}_1\mathcal{O}_2}(t) = \sum_n \frac{\langle 0|\mathcal{O}_1|n\rangle\langle n|\mathcal{O}_2|0\rangle}{2E_n} e^{-E_n t}$ from:

$$D(\Gamma_1, \Gamma_2) = (\psi_a^T C \Gamma_1 \phi_b) (\bar{\theta}_a C \Gamma_2 \bar{\omega}_b^T),$$

$$E(\Gamma_1, \Gamma_2) = (\psi_a^T C \Gamma_1 \phi_b) (\bar{\theta}_a C \Gamma_2 \bar{\omega}_b^T - \bar{\theta}_b C \Gamma_2 \bar{\omega}_a^T),$$

$$M(\Gamma_1, \Gamma_2) = (\bar{\theta} \Gamma_1 \psi) (\bar{\omega} \Gamma_2 \phi), \qquad N(\Gamma_1, \Gamma_2) = (\bar{\theta} \Gamma_1 \phi) (\bar{\omega} \Gamma_2 \psi),$$

$$O(\Gamma_1, \Gamma_2) = (\bar{\omega} \Gamma_1 \psi) (\bar{\theta} \Gamma_2 \phi), \qquad P(\Gamma_1, \Gamma_2) = (\bar{\omega} \Gamma_1 \phi) (\bar{\theta} \Gamma_2 \psi).$$

We want to solve a GEVP to get energy levels:

$$C_i(t) = \sum_{j,k} V_{ij}(\tau)^{\dagger} C_{jk}(t) V_{ki}(\tau)$$

where \boldsymbol{V} is made from columns of the eigenvector solution to:

$$C_{ij}(t)v_j(t) = \lambda_i C_{ij}(t+t_0)v_j(t) .$$

$\ell s ar c ar b$ tetraquarks

 $\ell s \bar{c} \bar{b}$ tetraquarks

 $u d \bar{c} \bar{b}$

 $ud\bar{c}\bar{b}$

 $sc\bar{b}\bar{b}$

 $sc\bar{b}\bar{b}$

 $uc\bar{b}\bar{b}$

 $uc\bar{b}\bar{b}$

Doubly-bottom tetraquarks

(Update to Francis et al. results due in coming months.)

Francis et al. [1607.05214]

- ★ $ud\bar{b}\bar{b}$ clearly bound
- Multiple lattice groups also find evidence of binding

 Binding increases with increasing heavy quark mass

Francis et al. [1810.10550]

Binding energy comparisons

(Update to Francis et al. results due in coming months.)

Summary

- * $ud\overline{b}\overline{b}$ state studied by various groups: agreement bound $\mathcal{O}(100)~{\rm MeV}$
- ★ Experimental search worthwhile for udbb
- ***** Evidence also: $\ell s \overline{b} \overline{b}$
- No evidence of deeply-bound tetraquarks in any of other channel explored.
- ★ On this basis, we can rule out models claiming deep binding in such channels.

THANK YOU