beauty production in pp and Pb–Pb collisions with ALICE

16th International Workshop on Meson Physics | 17th - 20th May 2021

Motivation

Outline

- Experimental Analysis
- Results
- Summary and Outlook

Motivation

- Heavy flavor quarks (beauty & charm) are produced at the early stages of collisions via hard parton-parton ^H scatterings.
- Experience full evolution of heavy ion collisions.

Pb-Pb collisions \rightarrow

- The QGP quark-gluon plasma, state of matter in which partons are deconfined
- Interaction of *b* and *c* quarks in the QGP and their energy loss (depends on quark mass)
 pp collisions →
- Test of perturbative quantum chromodynamics (pQCD)
- Provides a reference to study the larger collision systems (p-Pb, Pb–Pb)

Experimental Observables

- Nuclear Modification factor (R_{AA})
 - > Efffects of energy loss can be studied using R_{AA}

 $R_{\rm AA} = \frac{\sigma_{\rm inel}^{\rm pp}}{\langle N_{\rm coll} \rangle} \cdot \frac{dN_{\rm AA}/dp_{\rm T}}{d\sigma_{\rm pp}/dp_{\rm T}}$ Average number of binary

nucleon-nucleon collisions

Inealstic nucleon-nucleon

cross section

Differential production cross section of particles in pp collisions

transverse-momentum differential production yields

in nucleus-nucleus collisions

 $R_{\rm AA}=1$: Pb–Pb behaves as scaled pp collisions $R_{\rm AA}<1$: Suppression observed by the medium (QGP)

Energy loss in QGP:

- Heavier quarks loss less energy in the medium:

$$\rightarrow \Delta E_{u,d,s} > \Delta E_c > \Delta E_b$$

Collective flow

- > In the non-central collisions, overlap region is asymetric
 - → Collective motion is azimuthally dependent
- > Azimuthal dependence of particle production can be characterized by

Fourier expansion:

Reaction -plane angle

$$E\frac{\mathrm{d}^{3}N}{\mathrm{d}^{3}\mathbf{p}} = \frac{1}{2\pi} \frac{\mathrm{d}^{2}N}{p_{\mathrm{t}}\mathrm{d}p_{\mathrm{t}}\mathrm{d}y} \left(1 + 2\sum_{n=1}^{\infty} v_{n}\cos[n(\varphi - \Psi_{\mathrm{RP}})]\right)$$

Flow-coefficients

→ Elliptic flow (v_2) → Most dominant in contribution in azimuthal dependence

$$v_2 = \langle \cos[2(\phi - \Psi_{RP})] \rangle$$

ν₂ of beauty-hadrons (or their decay products) is important to study the interaction of *b*-quark with the QGP

The ALICE experiment

Analysis Procedure

b→D <mark></mark> & b→J/Ψ

- Signal extraction through invariant mass analysis
- ML techniques used to separate prompt • D mesons, non-prompt D mesons and combinatorial background
- $b \rightarrow J/\Psi$ fraction is measured by unbinned • likelihood fits on invariant mass and pseudoproper decay length

 $\chi^2/dof = 53/44$

ALICE Preliminary

3.6

3.8 4 m_{e⁺e} (GeV/c²)

pp, **\s** = 13 TeV

 $p_{-} > 1 \, \text{GeV}/c$

- Separated using distance to closest approach (d_{o})
- Longer lifetime \rightarrow larger **d**₀
- Template fit on impact parameter distribution

Himanshu Sharma, INP PAS, Krakow ALICE Collaboration

26

t background

Results: $b \rightarrow D$ meson production cross-section

|y| < 0.5

20

25

ALI-PUB-482561

PYTHIA8: T. Sjöstrand et al. JHEP 05 026 (2006)

Prompt D0 : EPJC 79 388 (2019)

18th May 2021 8

FONLL: M. Cacciari et al. JHEP 1210 137 (2012)

Results: **bb** production cross-section

ALI-PUB-482609

 $\begin{array}{l} \mbox{PHENIX: PRL 103 082002 (2009)} \\ \mbox{UA1: PLB 256 121-128 (1991)} \\ \mbox{CDF: Phys. Rev. D 75 012010 (2007)} \\ \mbox{b} \rightarrow \mbox{J/\Psi: JHEP 11 065 (2012)} \\ \mbox{b} \rightarrow \mbox{e: PLB 721 13-23 (2013)} \end{array}$

Dielectron, 5 TeV: PRC 102 055204 (2020) Dielectron, 7 TeV: JHEP 09 064 (2018) Dielectron, 13 TeV: PLB 788 505-518 (2019) NNLO: S. Catani et al. JHEP 03 029 (2021) FONLL: M. Cacciari et al. JHEP 1210 137 (2012)

- Beauty-quark production is described by FONLL and NNLO calculations over wide range of center-ofmass energies
- Estimated from measured production cross-sections of non-prompt D⁰, D⁺ and D_s⁺
 - In agreement with FONLL & NNLO calculations
 - Centered with respect to more precise NNLO calculation
 - Measured value is compatible with the previous
 ALICE measurements

Results: $b \rightarrow e \& b \rightarrow J/\Psi$ production cross-section

ALICE

TAMU: PLB 735 (2014) 445 MC@sHQ+EPOS2: PRC 89 (2014) 014905 LGR: Phys. Rev. C 99, 054909 (2019) ; Phys. Rev. C 98, 034914 (2018)

CUJET3: Chin. Phys. Lett. 32, 092501 (2015); JHEP 1602 (2016) 169; Chinese Phys. C 42 104104;

Himanshu Sharma, INP PAS, Krakow ALICE Collaboration ALICE

Results: R_{AA} of $b \rightarrow D^0$ meson

D⁰ meson

Pb-Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

Ratio of R_{AA} measured for non-prompt to prompt D⁰

- > p_{τ} < 5 GeV/*c* → hint of difference in shadowing / flow / decay kinematics for charm and beauty quarks
- > $p_{\tau} > 5 \text{ GeV}/c \rightarrow \text{hint of lower suppression}$ of *b*-quarks than *c*-quarks \rightarrow mass dependence of energy loss

TAMU: PLB 735 (2014) 445

MC@sHQ+EPOS2: PRC 89 (2014) 014905

LGR: Phys. Rev. C 99, 054909 (2019) ; Phys. Rev. C 98, 034914 (2018)

CUJET3: Chin. Phys. Lett. 32, 092501 (2015); JHEP 1602 (2016) 169; Chinese Phys. C 42 104104.

ALICE Preliminary

MESON-2021

Results: R_{AA} of b-e

Djordjevic: Phys. Rev. C 92, 024918 (2015) MC@sHQ+EPOS2: Phys. Rev. C 89, 014905 (2014) PHSD: Phys. Rev. C 93, 034906 (2016)

Himanshu Sharma, INP PAS, Krakow | ALICE Collaboration | M

MESON-2021

Results: Elliptic flow (v_2) of beauty-electrons

∽[∾] 0.3⊢

0.2

0.1

ALI-PUB-352028

2

ALICE

30-50%

Pb–Pb $\sqrt{s_{NN}}$ = 5.02 TeV

• Inclusive J/ψ , 2.5 < γ < 4

Υ(1S) 5–60%, 2.5 < γ < 4</p>

• Inclusive J/ψ , |y| < 0.9

 $\Rightarrow \pi^{\pm}, |y| < 0.5$

• Prompt D, |*v*| < 0.8

• b \rightarrow e, |v| < 0.8

12

14 16

 p_{τ} (GeV/c)

10

8

6

MC@sHQ+EPOS2: Phys. Rev. C 89, 014905 (2014) PHSD: Phys. Rev. C 93, 034906 (2016) LIDO: Phys. Rev. C 100, 064911 (2019) Blast-wave model (extension): Phys. Rev. C 101, 064905 (2020) ALICE Publication: Phys. Rev. Lett. 126, 162001 (2021)

ALI-PUB-347963

 -0.1^{l}

 \sim

0.3

0.2

0.1

0.4 ALICE

- b (\rightarrow c) \rightarrow e

— PHSD

LIDO

30–50% Pb–Pb, $\sqrt{s_{_{\rm NN}}}$ = 5.02 TeV

2345 F

MC@sHQ+EPOS2 (20-40%)

Elliptic Blast Wave

• Non-zero elliptic flow for beauty-decay electrons (significance 3.75σ) in the low p_{τ} range 1.3-6 GeV/c measured for the first time

 p_{\perp} (GeV/*c*)

|*y*| < 0.8

- Measurements are fairly described by various transport models within uncertainty
- Comparison suggests that b-quark may not fully thermalize with QGP
- Mass ordering in $p_T < 4 \text{ GeV}/c \rightarrow \text{Hydrodynamic}$ behaviour
- > Bottomonium flow $v_2 \sim 0$, open-beauty $v_2 > 0$

Summary

- Beauty production is studied in pp, Pb–Pb collisions with ALICE.
- pp collisions:
 - → Production cross section of $b \rightarrow D$, $b \rightarrow e$ and $b \rightarrow J/\Psi$ described by pQCD calculations (FONLL).
- Pb-Pb collisions:
 - → **b**-quarks undergo energy loss from the medium
 - Measurements are described by theoretical models including collisional & radiative energy loss
 - → Non-zero ν_2 of beauty-decay electrons

- Measurements of $b \rightarrow J/\Psi$ for Pb–Pb collisions for $\sqrt{s_{_{NN}}} = 5.02 \text{ TeV}$
- Prospects for LHC Run 3
 - > Corresponds to **100 x** more statistics
 - > Improved Track and vertex resolution →
 More precise heavy-flavour measurements
 in both central and forward rapidity region

Summary

- Beauty production is studied in pp, Pb–Pb collisions with ALICE.
- pp collisions:
 - → Production cross section of $b \rightarrow D$, $b \rightarrow e$ and $b \rightarrow J/\Psi$ described by pQCD calculations (FONLL).
- Pb-Pb collisions:
 - → **b**-quarks undergo energy loss from the medium
 - Measurements are described by theoretical models including collisional & radiative energy loss
 - → Non-zero v_2 of beauty-decay electrons

Outlook

- Measurements of $b \rightarrow J/\Psi$ for Pb–Pb collisions for $\sqrt{s_{_{NN}}} = 5.02 \text{ TeV}$
- Prospects for LHC Run 3
 - > Corresponds to **100 x** more statistics
 - > Improved Track and vertex resolution →
 More precise heavy-flavour measurements
 in both central and forward rapidity region

Thank you for your attention!

Himanshu Sharma, INP PAS, Krakow | ALICE Collaboration | MI

MESON-2021

Backup

bb production cross-section

Multiplying extrapolation factor ($\alpha^{b\overline{b}}_{extr}$) by p_{T} -integrated cross section of D-meson

$$\alpha_{\text{extr}}^{b\overline{b}} = \frac{d\sigma_{b\overline{b}}/dy|_{|y|<0.5}^{\text{FONLL}}}{\sigma_{b\rightarrow D}^{\text{FONLL+PYTHIA 8}}(p_{\text{T}}^{\text{min}} < p_{\text{T}} < p_{\text{T}}^{\text{max}}, |y| < 0.5)}$$

- Predictions from FONLL: for *b*-hadrons cross sections
- PYTHIA8: for $H_B \rightarrow D + X$ decay kinematics

Non-prompt D meson

- Reconstruction of displaced D-meson decay vertices at mid rapidity
- Signal extraction through invariant mass analysis;
- ML tecniqhes to separate prompt D mesons, non-prompt D mesons and combinatorial background;

- b→ D fraction obtained by χ^2 minimization of the system of n sets of selections with different prompt and non-prompt D-meson contributions.

 $R_{_{AA}}$ measured for non-prompt D⁰ in 0-10% and 10-30% Pb-Pb collisions $R_{_{AA}}(0-10\%) < R_{_{AA}}$ (30-50%)

Results: R_{AA} of b-e

- → Hint of less energy loss in 30-50% → QGP system size smaller for 30-50% collisions than central
- Comparison of $b \rightarrow e$ and $b, c \rightarrow e$: compatible with mass dependence of ΔE
- Results are described by theoretical model within uncertainties
 - Including radiative and collisional energy loss

Suppression of beauty-decay

electrons is observed

Hint of ordering at low p_{τ}

 $\rightarrow R_{\Delta\Delta}(b,c\rightarrow e) < R_{\Delta\Delta}(b\rightarrow e)$

Models for $b \rightarrow e \nu_2$

- The measurement is crucial for the understanding of the degree of thermalization of beauty quarks in the QGP.
- Compared with the predictions from several transport models, which include significant interaction of beauty quarks with a hydrodynamically-expanding QGP
 - > MC@sHQ+EPOS [Phys. Rev. C 89, 014905 (2014)],
 - > PHSD [Phys. Rev. C 93, 034906 (2016)],
 - LIDO [Phys. Rev. C 100, 064911 (2019)] [Phys. Rev. C 98, 064901]
- MC@sHQ+EPOS is a perturbative QCD model, which includes radiative and collisional energy loss. Modification of nuclear parton distribution functions, like shadowing, is not considered for b quarks.
- The PHSD model is a microscopic off-shell transport model based on a Boltzmann approach which **includes only collisional energy loss.**
- Models differ in several aspects related to the interactions both in the QGP and in the hadronic phase as well as to the medium expansion
- Elliptic blast wave: This model assumes full thermalization → at higher pT (> 5GeV/c) it diverges does not explain the data, suggests b-quarks may not fully thermalize in this pT interval.

Elliptic blast-wave Model:

- Assuming full thermalization, this model predicts a v₂ of Υ(1S) close to zero in the range measured by ALICE, which is consistent with the measurement.
- The results for beauty hadron decay electrons give a much larger v₂ due to mass ordering effect
- qualitatively in agreement with the measurement within the uncertainties for $p_{T} < 3$ GeV/c, while it significantly diverges from the data at higher p_{T}
- Within this model, the v₂ in the measured p_{T} range mainly comes from beauty hadrons below $p_{T} = 10$ GeV/c, suggesting that beauty quarks may not fully thermalize in this p_{T} interval.

Models

- MC@sHQ+EPOS2 and PHSD (Parton-Hadron-String Dynamics): Monte Carlo with running αS for Heavy Quarks
 - includes nuclear-modified PDFs (EPS09), PDF shadowing, medium expansion, fragmentation and coalescence 1908.00451 [nucl-th]
 - > Shadowing affects HQ-production at low pT.
 - $\,\succ\,$ Shadowing has impact on final $R_{_{AA}}$
 - > Collisional energy loss dominates at low energy, while radiative energy loss dominates at high energy
 - > PHSD only includes collisional energy loss
- MC@sHQ+EPOS2 and Djordjevic:
 - > include both collisional and radiative energy loss;
- Djordjevic:
 - dynamic partons in finite-size medium; no PDF shadowing, medium evolution/fluid dynamic expansion, or coalescence [Phys.Rev.C 92 (2015) 2, 024918]
- Langevin-transport with Gluon Radiation, LGR: Eur. Phys. J. C 80, 671 (2020)
- FONLL → Fixed Order + Next-to-Leading Logrithms
- NNLO \rightarrow Next-to-next-to Leading order

Heavy quark hadronization

- Most high momentum heavy quarks fragment into heavy mesons
 - Use PYTHIA 6.4 "independent fragmentation model"
- Most low momentum heavy quarks hadronize to heavy mesons via recombination (coalescence) mechanism

Heavy quark energy loss in QGP

- QGP medium: (2+1)-D viscous hydrodynamics (OSU)
- D=6/(2π T), i.e., q^{hat} ~ 2 GeV²/fm at a temperature around 350 MeV
- Collisional energy loss dominates at low energy, while radiative energy loss dominates at high energy
- The crossing point is larger for bottom than charm quarks due to the mass effect

Cao, GYQ, Bass, PRC 2013; JPG 2013

Link to presentation

27

18th May 2021

High Luminosity LHC

After ALICE Upgrade: Run 3 > 2021

Uniqueness: Excellent tracking down to 0 p_T and PID capability for hadron identification, in a broad momentum range: 0.1-3GeV/c

D-meson reconstruction with the upgraded ALICE detector:

- $D^0 R_{AA}$ down to $p_T=0$ and higher precision
- D⁰ from B meson: B-meson measurement via displaced D⁰ and J/ψ

Upgrade (ALICE studies)

- Precise v₂ measurement of prompt D.D_s
- D from B and $\Lambda_c v_2$ accessible

Follow the presentation for more details by: C.Terrevoli

ALICE Collaboration Himanshu Sharma, INP PAS, Krakow

30

p_ (GeV/c)

ALICE

25

18th May 2021 29

TANU Phys. Lett. B735:445 (2014)

- The transport coefficients are implemented via Fokker-Planck Langevin dynamics within hydrodynamic simulations of the bulk medium in nuclear collisions.
- The hydro expansion is quantitatively constrained by transverse-momentum spectra and elliptic flow of light hadrons.
- Model incorporates the paradigm of a strongly coupled medium in both bulk and HF dynamics throughout the thermal evolution of the system.
- At low and intermediate, HF observables at LHC are reasonably well accounted for, while discrepancies at high are indicative for radiative mechanisms not included in this model.

MC@sHQ+EPOS2 PRC 89 (2014) 014905

- Heavy quark evolution according to Boltzmann equation
- Medium description by EPOS+Hydro

EPOS

- Partons (parton ladders)
- Off-shell remnants, and
- Splitting of parton ladders

EPOS

Himanshu Sharma, INP PAS, Krakow | ALICE Collaboration | MESON-2021

- The heavy quark propagation behavior inside the QGP, is usually described in terms of the Boltzmann dynamics, which
 can be reduced to the Langevin approach by assuming a small momentum transfer for the scattering processes
 between heavy quarks and the QGP constituents.
- Only ellastic scatterings are considered for better agreement between both approaches
- The missing inelastic contributions allow reducing the discrepancy with data

PHSD (parton-hadron-string-dynamics) transport model Phys. Rev. C 93, 034906 (2016)

ALICE

- c-quarks are produced by Event generator PYTHIA
- (anti)-Shadowing incorporated
- Hadronization into D-meson through coalescence or fragmentation
- In final stages, interact with hadrons according to cross section by effective lagrangian theory