

Unconventional meson states with two or more heavy quarks

Christoph Hanhart

Forschungszentrum Jülich

Recent Review articles

- A. Esposito, A. Pilloni, A.D. Polosa, Phys. Rep. 668 (2016) 1
- H.X. Chen, W. Chen, X. Liu, S.L. Zhu, Phys. Rep. 639 (2016) 1
- A. Ali, J.S. Lange, S. Stone, Prog. Part. Nucl. Phys. 97 (2017) 123
- R.F. Lebed, R.E. Mitchell, E.S. Swanson, Prog. Part. Nucl. Phys. 93 (2017) 143
- S.L. Olsen, T. Skwarnicki, D. Zieminska, Rev. Mod. Phys. 90 (2018) 015003
- N. Brambilla, S. Eidelman, C.H., A. Nefediev, C.-P. Shen, C.E. Thomas, A. Vairo, C. Yuan,

with focus on molecular states: Phys. Rept. 873 (2020) 1

F.-K. Guo, C.H., U.-G. Meißner, Q. Wang, Q. Zhao, B.-S. Zou, Rev. Mod. Phys. 90(2018)015004

There are many exotics with $\bar{Q}Q$...

- → All exotic candidates above open flavor thresholds
- → Many (not all) states near S-wave thresholds of narrow states Filin et al., PBI, 105, 019101 (2010)

States Filin et al., PRL 105, 019101 (2010) Guo et al., PRD84, 014013 (2011)

- → States not near all those thresholds
- \rightarrow There are charged states that contain $\bar{Q}Q$
- → Lightest negative parity exotic (Y(4260)) significantly heavier than lightest positive parity exotics (X(3872) & $Z_c(3900)$)

Tetraquark

 \rightarrow Compact object formed from (Qq) and $(\bar{Q}\bar{q})$

Hadro-Quarkonium

 \rightarrow Compact $(\bar{Q}Q)$ surrounded by light quarks

Hadronic-Molecule

 \rightarrow Extended object made of $(\bar{Q}q)$ and $(Q\bar{q})$

Bohr radius = $1/\gamma = 1/\sqrt{2\mu E_b}$ $\gg 1 \text{ fm} \gtrsim \text{confinement radius}$ for near threshold states

I will review ideas on how to disentangle these structures

- → Straightforward extension of the quark model M. Gell-Mann, PL8(1964)214
- → Mesons as diquark—anti-diquark systems Jaffe, PRD15(1977)267, Maiani et al., PRD71(2005)014028
- → Separated by potential well Selem and Wilczek, hep-ph/0602128; Maiani et al., PLB778(2018)247 alternative approaches, e.g., Cui et al., HEPNP31(2007)7; Stancu, JPG37(2010) 075017
- → To account for spectrum spin-spin interaction needs to be dominant within diquarks ⇒ certain kind of Spin Symmetry Violation
- \rightarrow and tensor force, S_{12} , needs to be considered;

Ali et al. EPJC78(2018)29

without tensor force very light 3^{--}

Cleven et al., PRD 92(2015)014005

Results for negative parity states

- → Many more states predicted than observed!
 - Maybe since di-quark picture too restrictive/constraining?

Richard et al., PRD95(2017)054019

▷ Maybe more states in the peaks? Maiani et al., PRD102(2020)034017

- \rightarrow from QCD sum rules
- \rightarrow from lattice QCD
- \rightarrow from phenomenology

Du et al., PRD87(2013)014003

Francis et al. PRL118(2017)142001

Ader et al., PRD 25(1982)2370

Karliner and Rosner, PRL119(2017)202001; Eichten and Quigg, PRL119(2017)202002

E.g. from the last work

 $m(QQ\bar{q}\bar{q}\bar{q}) - m(QQq) \simeq m(\bar{Q}\bar{q}\bar{q}) - m(\bar{Q}q)$

exploiting heavy quark-diquark symmetry:

expansion in $r_{QQ}/r_q \sim \Lambda_{\rm QCD}/(M_Q v)$

Savage and Wise, PLB248(1990)177

Once m(QQq) is fixed from data or phenomenology,

 $\implies m(QQ\bar{q}\bar{q})$ can be predicted.

 \rightarrow states in *bb* with $J^P = 1^+$ (up to 350 MeV below BB^* thres.)

Comparison of various studies

M. Pflaumer at "Experimental and theoretical status of and perspectives for XYZ states", 04/2021

Might be measureable via displaced B_c vertices

T. Gershon and A. Poluektov, JHEP01(2019)019

Unconventional meson states with two or more heavy quarks - p. 7/19

M. B. Voloshin, PPNP61(2008)455

→ Extra states are viewed as compact $\bar{Q}Q$ surrounded by light quarks

Q Q Q Q

→ Provides natural explanation why, e.g., Y(4260)is seen in $J/\psi\pi\pi$ final state but not in $\overline{D}D$

- → Heavy quark spin symmetry demands that spin of the core is conserved in decay to charmonia
- → Explaining $e^+e^- \rightarrow h_c \pi \pi$ needs mixing between states with $s_{\bar{c}c} = 0$ and $s_{\bar{c}c} = 1$ leading to Y(4260) and Y(4360)Li & Voloshin MPLA29(2014)1450060

Unconventional meson states with two or more heavy guarks - p. 8/19

The above mentioned mixing suggests for the unmixed states: $\Psi_3 \sim (1^{--})_{c\bar{c}} \otimes (0^{++})_{q\bar{q}} \qquad \Psi_1 \sim (1^{+-})_{c\bar{c}} \otimes (0^{-+})_{q\bar{q}}$, where the heavy cores are ψ' and h_c .

 \longrightarrow get spin partners via $\psi' \rightarrow \eta'_c$ and $h_c \rightarrow \{\chi_{c0}, \chi_{c1}, \chi_{c2}\}$

Special feature: very light 0^{-+} state that should not decay to $D^*\overline{D}$

recent review article: Guo et al., Rev. Mod. Phys. 90(2018)015004

- $\rightarrow\,$ are few-hadron states, bound by the strong force
- \rightarrow do exist: light nuclei. e.g. deuteron as pn & hypertriton as Λd bound state

- → are located typically close to relevant continuum threshold; e.g., for $E_B = m_1 + m_2 - M$ ($\gamma = \sqrt{2\mu E_B} \mu = m_1 m_2/(m_1 + m_2)$)
 - $\triangleright E_B^{\text{deuteron}} = 2.22 \text{ MeV} (\gamma = 40 \text{ MeV})$
 - $\triangleright E_B^{\text{hypertriton}} = (0.13 \pm 0.05) \text{ MeV} (\text{to } \Lambda d) (\gamma = 26 \text{ MeV})$

 \rightarrow can be identified in observables (Weinberg compositeness):

$$\frac{g_{\text{eff}}^2}{4\pi} = \frac{4M^2\gamma}{\mu}(1-\lambda^2) \rightarrow a = -2\left(\frac{1-\lambda^2}{2-\lambda^2}\right)\frac{1}{\gamma}; \quad r = -\left(\frac{\lambda^2}{1-\lambda^2}\right)\frac{1}{\gamma}$$

where $(1 - \lambda^2)$ =probability to find molecular component in bound state wave function

Are there mesonic molecules?

Constituents must be narrow. Heavy candidates (M, Γ in MeV)

 $D (0^-, M = 1865, \Gamma \simeq 0); D^*(1^-, M = 2007, \Gamma \simeq 0.1)$ $D_1(1^+, M = 2420, \Gamma \simeq 30); D_2^*(2^+, M = 2460, \Gamma \simeq 50)$

 $D_0(2400)$ and $D_1(2430)$ with $\Gamma = 300$ MeV too broad ...

Spectrum driven by $D-D^*$ and D_1-D_2 mass differences

Unconventional meson states with two or more heavy guarks - p. 11/19

I. Matuschek, V. Baru, F. K. Guo and CH, EPJA 57(2021)1019 Model independent criterion for virtual states and resonances

I. Matuschek, V. Baru, F. K. Guo and CH, EPJA 57(2021)1019 Assume attractive interaction (bound state a < 0, all others a > 0)

Weinberg (for bound states): Molecules: $|a| \gg |r|$ and $|r| \simeq$ range Compact states: $|a| \ll |r|$ and r < 0 with $|r| \gg$ range

What happens when a changes sign? (r fixed)

Molecule: turns into a virtual state (and eventually a resonance)

Compact state: turns into a resonance directly

Subsummed into compositness: $\bar{X}_A = 1/\sqrt{1+|2r/a|}$

other approaches: Sekihara, Hyodo, Oset, Oller, Nieves, Jido ... mostly relying on on-shell factorisation of the potential; little about virtual states Unconventional meson states with two or more heavy quarks -p, 13/19

Study of the double J/ψ spectrum

Are these states tetraquarks or molecules? There are many thresholds in the mass range:

R. Aaij et al. [LHCb], Sci. Bull. 65(2020) 1983

Study of the double J/ψ spectrum

Are these states tetraquarks or molecules? There are many thresholds in the mass range:

Unconventional meson states with two or more heavy guarks - p. 15/19

Two models

Xiang-Kun Dong et al., PRL126(2021) 132001 We calculate $T(E) = V(E) \cdot [1 - G(E)V(E)]^{-1}$, with either

$$V_{2ch}(E) = \begin{pmatrix} a_1 + b_1 k_1^2 & c \\ c & a_2 + b_2 k_2^2 \end{pmatrix} \text{ or } V_{3ch}(E) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix},$$

where the $J/\psi J/\psi$, $\psi(3686)J/\psi$ (and $\psi(3770)J/\psi$) were included

Both models provide excellent description of data

Pole structure

The pole structure is very different:

In total 3 states:

1 close to $J/\psi J/\psi$ -thresh.,

2 to produce structures (via interplay with threshold)

In total 2 states

1 close to $J/\psi J/\psi$ -thresh.,

1 to produce structures (via interplay with thresholds)

Very close to threshold state always present!

	2-ch. fit	3-ch. fit 1	3-ch. fit 2
$a(\mathrm{fm})$	$\leq -0.49\mathrm{or} \geq 0.48$	$-0.61^{+0.29}_{-0.32}$	$\leq -0.60\mathrm{or} \geq 0.99$
$r(\mathrm{fm})$	$-2.18^{+0.66}_{-0.81}$	$-0.06^{+0.03}_{-0.04}$	$-0.09^{+0.08}_{-0.05}$
\bar{X}_A	$0.39^{+0.58}_{-0.12}$	$0.91\substack{+0.04 \\ -0.07}$	$0.95\substack{+0.04 \\ -0.06}$

The models allow for different nature of $J/\psi J/\psi$ state! E.g. two channel model consistent with compact and composite

The two scenarios can be easily distinguished!

e.g. via $\psi(2S)J/\psi$ final state

Summary

We therefore saw:

- → Structure of multiquark states is reflected in the spectrum or in line shapes
- \rightarrow Symmetries (HQSS, SU_F(3), chiral) play a crucial role
- → Multiplets reflect assumed structure
- \rightarrow The symmetry breaking is specific for the underlying model

Thus, once we know the spectrum we will know

- \rightarrow If diquarks or color neutral building blocks form, if any
- → If those are light-light vs. heavy-heavy or heavy-light
- \rightarrow What it takes to further confirm the picture

Thank you very much for your attention