

Inclusive production of prompt charged particles in pp collisions at LHCb

Julian Boelhauve on behalf of the LHCb collaboration 17 May 2021

16th International Workshop on Meson Physics (virtual)

Introduction

- Measurements of hadron production in high-energy collisions important input to phenomenological interaction models in non-perturbative quantum chromodynamics
- Corresponding Monte Carlo event generators
 - Used at the Large Hadron Collider to simulate the underlying event for hard processes
 - Used in astroparticle physics to simulate atmospheric interactions inducing air showers
- Long-standing discrepancy in number of muons produced in high-energy air showers between observations and simulation (Muon Puzzle) EPJ Web Conf. 210, 02004 (2019)
- Decide between two classes of models predicting broad or narrow pseudorapidity (η) spectrum

LHCb detector

- Single-arm forward spectrometer Int. J. Mod. Phys. A 30, 1530022 (2015)
 - \blacksquare Covering range $\eta \in [2,5]$
 - Acceptance of particular interest for cosmic-ray research
- Very good vertex resolution
- Momentum resolution varying from 0.5 % at low momentum to 1.0 % at 200 GeV/c

Analysis strategy

Measure differential cross-section of prompt production of long-lived charged particles

- In proton-proton (pp) collisions at a centre-of-mass energy of $\sqrt{s} = 13 \,\mathrm{TeV}$
- \blacksquare As a function of transverse momentum $(p_{\rm T})$ and η
- Separately for positively and negatively charged particles
- Prompt long-lived charged particles ALICE-PUBLIC-2017-005 (2017)
 - $\blacksquare e^-, \mu^-, \pi^+, K^+, p, \varSigma^+, \varSigma^-, \varXi^- \text{ and } \varOmega^-$
 - \blacksquare Produced directly in the primary interaction or having only ancestor particles with lifetimes below $30\,\mathrm{ps}$
- \blacksquare Use unbiased data sample corresponding to an integrated luminosity of $\mathcal{L}=5.4\,\mathrm{nb}^{-1}$

Analysis strategy

Differential cross-section:

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}\eta\,\mathrm{d}p_{\mathrm{T}}} \equiv \frac{n}{\mathcal{L}\,\Delta\eta\,\Delta p_{\mathrm{T}}}$$

- $n \quad {\rm Real \ number \ of \ prompt \ long-lived \ charged \ particles}$
- Apply basic selection
 - Use only tracks traversing the entire tracking system
 - \blacksquare Require fake-track probability of $P_{\rm fake} < 0.3$
- Relation between number of candidate tracks (n_{cand}) and n:

$$n_{\rm cand} = \varepsilon \, n + \sum_i n_i$$

 ε Total efficiency

 n_i Numbers of background tracks from various sources i

- \blacksquare Take simulated values of ε and n_i and adjust simulation to capture possible differences compared to data
- Scale simulated background contributions using ratios (R_i) of proxy variables (\mathcal{P}_i) with $\mathcal{P}_i \propto n_i$ in data and simulation
- Subtract background from interactions of the beams with residual gas in the beam pipe

Efficiencies

- Correct simulated efficiency for charged particles for offset between data and simulation J. Instrum. 10, P02007 (2015)
- Efficiency dependent on composition of particles due to different lifetimes and hadronic-interaction cross-sections
- Adjust simulated particle composition by extrapolating LHCb measurements of ratios of prompt hadron production from $\sqrt{s} = 0.9 \text{ TeV}$ and 7 TeV Eur. Phys. J. C 72, 2168 (2012) to 13 TeV

Origins of candidate tracks

■ White areas above blue histograms representing fake tracks

Non-negligible background contributions from fake tracks, photon conversions, charged-pion material interactions and strange decays

- Contribution from fake tracks to candidate tracks approximately proportional to number of tracks with high P_{fake} values
- In each kinematic bin
 - \blacksquare Divide $P_{\rm fake}$ distribution into ten bins
 - Choose first bin above $P_{\rm fake}=0.3$ with fake-track purity above 80~% to determine $R_{\rm fake}$

[LHCb-PAPER-2021-010, in preparation]

- Number of tracks produced in interactions of charged pions with the detector material
 - Form combinations of three tracks and define point of closest approach as candidate vertex of interaction
 - Require minimum distance of vertex from the beam axis to discard region without material
 - Apply further topological and kinematic requirements optimised using simulation
- \blacksquare Scale also simulated number of tracks from conversions of photons (mostly originating from neutral-pion decays) with $R_{\rm mat}$

Proxy for material interactions

• Require purity in kinematic bin above 30% to accept value of $R_{\rm mat}$ and use median value otherwise

Proxy for strange decays

- Form pairs of oppositely charged tracks applying topological requirements to select $K_{\rm S}^0 \to \pi^+\pi^-$, $\Lambda \to p\pi^-$ and $\overline{\Lambda} \to \overline{p}\pi^+$ candidates
- Fit invariant-mass distributions in kinematic bins of the parent particles
- Model signal with Student's function and background with second-degree Bernstein polynomial

Proxy for strange decays

- Perform combined fit to ratios of signal yields with monotone cubic spline
- Assign systematic uncertainty to cover variations not reflected by statistical uncertainty
- \blacksquare Use fitted model to determine $R_{\rm strange}$ in kinematic bins of the decay products

Uncertainties of number of prompt long-lived charged particles

- Total uncertainty between 1.1 % and 15 % and statistical uncertainty negligible
- Largest overall contribution from track-reconstruction efficiency
- Further contribution of 2.0 % from integrated luminosity

Correlation matrix of differential cross-section

 \blacksquare Large, medium and small cells respectively corresponding to particle charges, η bins and $p_{\rm T}$ bins

Correlations positive due to dominating and often fully correlated systematic uncertainties

Differential cross-section of prompt production of long-lived charged particles

Deviations between $-26\,\%$ and $+170\,\%$

Smallest overall deviation observed for EPOS-LHC

Ratio of differential cross-sections for positively and negatively charged particles

Best description provided by PYTHIA 8

Summary

- Measured differential cross-section of prompt production of long-lived charged particles in pp collisions at $\sqrt{s} = 13$ TeV with the LHCb experiment
 - \blacksquare As a function of $p_{\rm T}$ and η in the ranges $p_{\rm T} \in [0.1, 10.0)\,{\rm GeV}/c$ and $\eta \in [2.0, 4.8)$
 - Separately for positively and negatively charged particles
- \blacksquare High precision in most kinematic bins and overall uncertainty between $2.3\,\%$ and $15\,\%$
- Full correlation matrix will be published
- Cross-section mostly overestimated by recent hadronic-interaction models
- Paper (LHCb-PAPER-2021-010) will be published soon and will be submitted to JHEP

Backup

Total efficiency

Proxy ratio for fake tracks

