Implications of the $D_{s}^{+} \rightarrow \pi^{+} \pi^{0} \eta$ decay in the nature of $a_{0}(980)$ and molecular interpretation of the new $X_{0}(2900)$

Raquel Molina，Ju－Jun Xie，Wei－Hong Liang，Lisheng Geng and E．Oset

Table of contents

1. Introduction
2. The $D_{s}^{+} \rightarrow \pi^{+} \pi^{0} \eta$ decay and the nature of the $a_{0}(980)$
3. The new state $X_{0}(2900)$
4. Conclusions

Introduction

Hadrons

Standard Hadrons

Exotic Hadrons

- 'Regular' hadrons: $q \bar{q}, q q q$

- Exotics: $q \bar{q} q \bar{q}, q q q q \bar{q}, q q g, \ldots$

Not $q \bar{q}: J^{P C}=0^{+-}, 1^{-+}, 2^{+-}$, $3^{-+}, \ldots$

Dynamically Generated Resonances

Examples

- $\sigma, a_{0}(980), f_{0}(980) \ldots$ oller, Oset, Pelaez, PRL80(1998)
- $N(1440)$ Krehl, Hanhart, Krewald and Speth, PRC62(2000)
- $\bigwedge(1405)$ Ramos, Oset, nPA635(1998); Jido, Meissner, Oller NPA725(2003) ; Hyodo, Weise PRC77(2008)
- $P_{c}(4450)$ Wu, Molina, Zou, Oset, PRL105(2010)
- New state $X_{0}(2900)$ Molina, Branz, Oset PrD82(2010)

The $D_{s}^{+} \rightarrow \pi^{+} \pi^{0} \eta$ decay and the nature of the a_{0} (980)

Is the $a_{0}(\mathbf{9 8 0})$ a threshold effect or a true resonance?

Figure 1: Integrated cross section for $\gamma \gamma \rightarrow \pi^{0} \eta$. Data: Oest(1990), Antreasyan(1986).

UChPT
predictions
Channels: $K \bar{K}, \pi \eta$
Oller, Oset, NPA629(1998)
Guo, Liu, Oller,
Rusetski, Meissner
PRD95(2017)

Figure 2: Fit to HadSpec data.

Figure 3: Left: $\pi \eta$ distribution. Data: WA76(1991). Right. Cross section $\gamma \gamma \rightarrow \pi \eta$. Data: Belle(2009).

Is the $a_{0}(980)$ a threshold effect or a true resonance?

Large N_{c} behaviour

"In particular, we have shown that the QCD large N_{c} scaling of the unitarized meson-meson amplitudes of chiral perturbation theory is in conflict with a $\bar{q} q$ nature for the lightest scalars [not so conclusively for the $a_{0}(980)$. The $a_{0}(980)$ behavior is more complicated. We cannot rule out a possible $\bar{q} q$ nature, or a sizable mixing], and strongly suggests a $\bar{q} \bar{q} q q$ or two-meson main component, maybe with some mixing with glue- balls, when possible."

Pelaez, PRL92(2004)

Amplitude analysis of $\chi_{c 1} \rightarrow \eta \pi^{+} \pi^{-}$

Figure 4: Projections in the (a) $\eta \pi$-invariant mass from data, compared with a base-line fit (solid curve) and corresponding amplitudes (various dashed and dotted lines) from PRD95(2017), BESIII.

BESIII: $D_{s}^{+} \rightarrow \pi^{+} \pi^{0} \eta$
2019. BESIII has reported the so-called first observation of a pure W-annihilation decays $D_{s}^{+} \rightarrow a_{0}^{+}(980) \pi^{0}$ and $D_{s}^{+} \rightarrow a_{0}^{0}(980) \pi^{+}$

Figure 5: Annihilation mechanisms assumed in Ref.for the $D_{s}^{+} \rightarrow \pi^{0} a_{0}^{+}$(980), $\pi^{+} a_{0}^{0}(980) . \mathcal{B}\left[D_{s}^{+} \rightarrow a_{0}(980)^{+} \pi^{0}, a_{0}(980)^{+} \rightarrow \pi^{+} \eta\right]=(1.46 \pm 0.15 \pm 0.23) \%$

Topological classification of Weak decays

1. W-external emission
2. W-internal emission
L.L.Chau. PR(1983), PRD36(1987), PRD39(1989)
(Cabibbo favored) W-external emission? $D_{s}^{+} \rightarrow \pi^{+} \bar{s} s$, but $\bar{s} s$ has $I=0$. Requires $f_{0}(980)$ upon hadronization. Not good
3. Horizontal W-loop
4. W-annhilation
5. Vertical W-loop

$D_{s}^{+} \rightarrow \pi^{+} \pi^{0} \eta: W$-internal emission PLB803(2020)

Figure 6: $D_{s}^{+} \rightarrow \pi^{0} a_{0}^{+}(980), \pi^{+} a_{0}^{0}(980): W$ internal emission mechanisms, (a) Primary step; (b) hadronization of the $s \bar{d}$ pair; (c) hadronization of the $u \bar{s}$ pair.

Hadronization

$$
\begin{array}{rlrl}
M=\left(\begin{array}{ccc}
u \bar{u} & u \bar{d} & u \bar{s} \\
d \bar{u} & d \bar{d} & d \bar{s} \\
s \bar{u} & s \bar{d} & s \bar{s}
\end{array}\right), & \sum_{i} s \bar{q}_{i} q_{i} \bar{d} & =\sum_{i} M_{3 i} & M_{i 2}=\left(M^{2}\right)_{32}, \\
\left(M^{2}\right)_{32}=\pi^{+} K^{-}-\frac{1}{\sqrt{2}} \pi^{0} \bar{K}^{0}, & \sum_{i} u \bar{q}_{i} q_{i} \bar{s} & =\sum_{i} M_{1 i} & M_{i 3}=\left(M^{2}\right)_{13}, \\
\left(M^{2}\right)_{13}=\frac{1}{\sqrt{2}} \pi^{0} K^{+}+\pi^{+} K^{0}, & H_{2} & =\left(\pi^{+} K^{-}-\frac{1}{\sqrt{2}} \pi^{0} \bar{K}^{0}\right) K^{+}, \\
& =\left(\frac{1}{\sqrt{2}} \pi^{0} K^{+}+\pi^{+} K^{0}\right) \bar{K}^{0} .
\end{array}
$$

$D_{s}^{+} \rightarrow \pi^{0} a_{0}^{+}(980), \pi^{+} a_{0}^{0}(980)$

Figure 7: Diagrammatic representation of the $K \bar{K}$ final state interaction of the states H_{1} and H_{2} leading to $\pi^{+} \pi^{0} \eta$ in the final states.

$$
\begin{aligned}
t= & V_{1}\left[G_{K \bar{K}}\left(M_{\pi^{0} \eta}\right) t_{K^{+} K^{-} \rightarrow \pi^{0} \eta}\left(M_{\pi^{0} \eta}\right)-\frac{1}{\sqrt{2}} G_{K \bar{K}}\left(M_{\pi^{+} \eta}\right) t_{K^{+} \bar{K}^{0} \rightarrow \pi^{+} \eta}\left(M_{\pi^{+} \eta}\right)\right] \\
& +V_{2}\left[G_{K \bar{K}}\left(M_{\pi^{0} \eta}\right) t_{K^{0} \bar{K}^{0} \rightarrow \pi^{0} \eta}\left(M_{\pi^{0} \eta}\right)+\frac{1}{\sqrt{2}} G_{K \bar{K}}\left(M_{\pi^{+} \eta}\right) t_{K^{+} \bar{K}^{0} \rightarrow \pi^{+} \eta}\left(M_{\pi^{+} \eta}\right)\right]
\end{aligned}
$$

$D_{s}^{+} \rightarrow \pi^{0} a_{0}^{+}(980), \pi^{+} a_{0}^{0}(980)$

Chiral Unitary approach

$$
T=[1-V G]^{-1} V
$$

Oller, Oset, Pelaez, PRL80(1998) Xie, Dai, Oset, PLB742(2015)
$q_{\text {max }}=600 \mathrm{MeV}$

Isospin

$$
\begin{aligned}
& t_{K^{+} K^{-} \rightarrow \pi^{0} \eta}=-\frac{1}{\sqrt{2}} t_{K \bar{K} \rightarrow \pi \eta}^{\prime=1}, \\
& t_{K^{0} \bar{K}^{0} \rightarrow \pi^{0} \eta}=\frac{1}{\sqrt{2}} t_{K \bar{K} \rightarrow \pi \eta}^{\prime=1}, \\
& t_{K^{+}+\bar{K}^{0} \rightarrow \pi^{+} \eta}=-t_{K \bar{K} \rightarrow \pi \eta}^{\prime=1},
\end{aligned}
$$

We obtain,

$$
t=\bar{V}\left[G_{K \bar{K}}\left(M_{\pi^{0} \eta}\right) t_{K \bar{K} \rightarrow \pi \eta}^{\prime=1}\left(M_{\pi^{0} \eta}\right)-G_{K \bar{K}}\left(M_{\pi^{+} \eta}\right) t_{K \bar{K} \rightarrow \pi \eta}^{\prime=1}\left(M_{\pi^{+} \eta}\right)\right]
$$

with $\bar{V}=\left(V_{2}-V_{1}\right) / \sqrt{2}$.
Note that, with the isospin multiplets $(u, d),(-\bar{d}, \bar{u})$,

$$
\begin{array}{ll}
|s \bar{d}>=-| 1 / 2,1 / 2> & |s \bar{d}, u \bar{s}>=-| 1,1> \\
|u \bar{s}>=| 1 / 2,1 / 2> & \left|\pi a_{0} ; I=1, I_{3}=1>=\frac{1}{\sqrt{2}}\right| \pi^{0} a_{0}^{+}-\pi^{+} a_{0}^{0}>
\end{array}
$$

$D_{s}^{+} \rightarrow \pi^{0} a_{0}^{+}(980), \pi^{+} a_{0}^{0}(980)$

Invariant mass distribution

$$
\frac{d^{2} \Gamma}{d M_{\pi^{0} \eta} d M_{\pi^{+} \eta}}=\frac{1}{(2 \pi)^{3}} \frac{M_{\pi^{0} \eta} M_{\pi^{+} \eta}}{8 M_{D_{s}^{+}}^{2}}|t|^{2}
$$

Figure 8: $d \Gamma / d M_{\pi^{0} \eta}$ as a function of $M_{\pi^{0} \eta}$. Dashed line with no $M_{\pi^{+} \pi^{0}}$ restriction. Solid line with the restriction of $M_{\pi^{+} \pi^{0}}>1 \mathrm{GeV}$.

$D_{s}^{+} \rightarrow \pi^{0} a_{0}^{+}(980), \pi^{+} a_{0}^{0}(980)$

Figure 9: Event distribution in 40 MeV bins of $d \Gamma / d M_{\pi \eta}$ compared with experiment with $M_{\pi^{+} \pi^{0}}>1 \mathrm{GeV}$. (a) for $\pi^{0} \eta$ distribution; (b) for $\pi^{+} \eta$ distribution. The dashed lines are taken from [1] after the non πa_{0} events are removed. Molina, Xie, Liang, Geng and Oset, PLB803(2020)
[1] BESIII Collaboration, PRL123(2019)
But...this is not the end of the story!

$D_{s}^{+} \rightarrow \pi^{0} a_{0}^{+}(980), \pi^{+} a_{0}^{0}(980)$

Arxiv: 2102.0534, Ling, Liu, Lu, Geng and Xie

Inspired in the work of Hsiao et al., EPJC80(895), the authors find that both mechanisms, internal and external-W emission through triangle diagrams are relevant.

(a)

(b)

Figure 12: Triangle rescattering diagrams for $D_{s}^{+} \rightarrow\left(K^{* 0} \bar{K}^{0} \rightarrow\right) \pi^{+} \pi^{0} \eta$ and $D_{s}^{+} \rightarrow\left(K^{+} \bar{K}^{* 0} \rightarrow\right) \pi^{+} \pi^{0} \eta$.

The new state X_{0} (2900)

New flavor exotic tetraquark ($C=-1 ; S=1$)

LHCb (2020)

Two states $J^{P}=0^{+}, 1^{-}$decaying to $\bar{D} K$. First clear example of an heavy-flavor exotic tetraquark, $\sim \bar{c} \bar{s} u d$.

$$
\begin{aligned}
& X_{0}(2866): M=2866 \pm 7 \quad \text { and } \quad \Gamma=57.2 \pm 12.9 \mathrm{MeV}, \\
& X_{1}(2900): M=2904 \pm 5 \quad \text { and } \quad \Gamma=110.3 \pm 11.5 \mathrm{MeV} .
\end{aligned}
$$

D. Johnson (CERN), LHC seminar, $B \rightarrow D D h^{-}$; a new (virtual) laboratory for exotic searches at LHCb p. August 11 (2020)

Vector-vector scattering Bando,Kugo,Yamawaki

$$
\begin{aligned}
\mathcal{L}_{I I I}=-\frac{1}{4}\left\langle V_{\mu \nu} V^{\mu \nu}\right\rangle & \underbrace{\mathcal{L}_{\text {III }}^{(c)}=\frac{g^{2}}{2}\left\langle V_{\mu} V_{\nu} V^{\mu} V^{\nu}-V_{\nu} V_{\mu} V^{\mu} V^{\nu}\right\rangle}_{\text {LIII }}
\end{aligned}
$$

$$
V_{\mu}=
$$

$$
\begin{array}{ll}
V_{\mu \nu}= & V_{\mu}= \\
\partial_{\mu} V_{\nu}-\partial_{\nu} V_{\mu}-i g\left[V_{\mu}, V_{\nu}\right] \\
g=\frac{\nu_{\nu}}{2 f}
\end{array} \quad\left(\begin{array}{cccc}
\frac{\rho^{0}}{\sqrt{2}}+\frac{\omega}{\sqrt{2}} & \rho^{+} & K^{*+} & \bar{D}^{* 0} \\
\rho^{-} & -\frac{\rho^{0}}{\sqrt{2}}+\frac{\omega}{\sqrt{2}} & K^{* 0} & D^{*-} \\
K^{*-} & \bar{K}^{* 0} & \phi & D_{s}^{*-} \\
D^{* 0} & D^{*+} & D_{s}^{*+} & J / \psi
\end{array}\right)_{\mu} .
$$

a)

b)

c)

d)

New flavor exotic tetraquark ($C=1, S=-1$)

Molina,Branz,Oset, PRD82(2010)

(a)

(b)

(c)

Figure 13: The $D^{*} \bar{K}^{*} \rightarrow D^{*} \bar{K}^{*}$ interaction at the tree level; (a) contact term; (b) exchange of light vectors; (c) exchange of a heavy vector.

| J | Amplitude | Contact | V-exchange | \sim Total |
| :--- | :--- | ---: | ---: | ---: | ---: |
| 0 | $D^{*} \bar{K}^{*} \rightarrow D^{*} \bar{K}^{*}$ | $4 g^{2}$ | $-\frac{g^{2}\left(p_{1}+p_{4}\right) \cdot\left(p_{2}+p_{3}\right)}{m_{D_{s}}^{2}}+\frac{1}{2} g^{2}\left(\frac{1}{m_{\omega}^{2}}-\frac{3}{m_{\rho}^{2}}\right)\left(p_{1}+p_{3}\right) \cdot\left(p_{2}+p_{4}\right)$ | $-9.9 g^{2}$ |
| 1 | $D^{*} \bar{K}^{*} \rightarrow D^{*} \bar{K}^{*}$ | 0 | $\frac{g^{2}\left(p_{1}+p_{4}\right) \cdot\left(p_{2}+p_{3}\right)}{m_{D_{s}}^{*}}+\frac{1}{2} g^{2}\left(\frac{1}{m_{\omega}^{2}}-\frac{3}{m_{\rho}^{2}}\right)\left(p_{1}+p_{3}\right) \cdot\left(p_{2}+p_{4}\right)$ | $-10.2 g^{2}$ |
| 2 | $D^{*} \bar{K}^{*} \rightarrow D^{*} \bar{K}^{*}$ | $-2 g^{2}$ | $-\frac{g^{2}\left(p_{1}+p_{4}\right) \cdot\left(p_{2}+p_{3}\right)}{m_{D_{s}^{*}}^{2}}+\frac{1}{2} g^{2}\left(\frac{1}{m_{\omega}^{2}}-\frac{3}{m_{\rho}^{2}}\right)\left(p_{1}+p_{3}\right) \cdot\left(p_{2}+p_{4}\right)$ | $-15.9 g^{2}$ |

Table 1: Tree level amplitudes for $D^{*} \bar{K}^{*}$ in $I=0$. Last column: $\left(V_{\mathrm{th} .}\right)$.

New flavor exotic tetraquark ($C=1, S=-1$)

Spin projectors

$$
\begin{aligned}
& \mathcal{P}^{(0)}=\frac{1}{3} \epsilon_{\mu} \epsilon^{\mu} \epsilon_{\nu} \epsilon^{\nu} \\
& \mathcal{P}^{(1)}=\frac{1}{2}\left(\epsilon_{\mu} \epsilon_{\nu} \epsilon^{\mu} \epsilon^{\nu}-\epsilon_{\mu} \epsilon_{\nu} \epsilon^{\nu} \epsilon^{\mu}\right) \\
& \mathcal{P}^{(2)}=\left\{\frac{1}{2}\left(\epsilon_{\mu} \epsilon_{\nu} \epsilon^{\mu} \epsilon^{\nu}+\epsilon_{\mu} \epsilon_{\nu} \epsilon^{\nu} \epsilon^{\mu}\right)-\frac{1}{3} \epsilon_{\mu} \epsilon^{\mu} \epsilon_{\nu} \epsilon^{\nu}\right\}
\end{aligned}
$$

$$
T=[\hat{1}-V G]^{-1} V
$$

$I\left(J^{P}\right)$	$M[\mathrm{MeV}]$	$\Gamma[\mathrm{MeV}]$	Channels	state
$0\left(2^{+}\right)$	2572	23	$D^{*} K^{*}, D_{s}^{*} \phi, D_{s}^{*} \omega$	$D_{s 2}(2572)$
$0\left(1^{+}\right)$	2707	-	$D^{*} K^{*}, D_{s}^{*} \phi, D_{s}^{*} \omega$	$?$
$0\left(0^{+}\right)$	2683	71	$D^{*} K^{*}, D_{s}^{*} \phi, D_{s}^{*} \omega$	$?$

Table 2: States with $C=1, S=1, I=0$.

$I\left(J^{P}\right)$	$M[\mathrm{MeV}]$	$\Gamma[\mathrm{MeV}]$	Channels	state
$0\left(2^{+}\right)$	2733	36	$D^{*} \bar{K}^{*}$	$?$
$0\left(1^{+}\right)$	2839	-	$D^{*} \bar{K}^{*}$	$?$
$0\left(0^{+}\right)$	2848	59	$D^{*} \bar{K}^{*}$	$X_{0}(2866)$

Table 3: States with $C=1, S=-1, I=0$.

New flavor exotic tetraquark ($C=1, S=-1$)
Two-meson loop function:

$$
\begin{aligned}
G_{i}(s) & =\frac{1}{16 \pi^{2}}\left(\alpha+\log \frac{M_{1}^{2}}{\mu^{2}}+\frac{M_{2}^{2}-M_{1}^{2}+s}{2 s} \log \frac{M_{2}^{2}}{M_{1}^{2}}\right. \\
& \left.+\frac{p}{\sqrt{s}}\left(\log \frac{s-M_{2}^{2}+M_{1}^{2}+2 p \sqrt{s}}{-s+M_{2}^{2}-M_{1}^{2}+2 p \sqrt{s}}+\log \frac{s+M_{2}^{2}-M_{1}^{2}+2 p \sqrt{s}}{-s-M_{2}^{2}+M_{1}^{2}+2 p \sqrt{s}}\right)\right)
\end{aligned}
$$

Form factor (box-diagram):

$$
\begin{equation*}
F(q)=e^{\left(\left(p_{1}^{0}-q^{0}\right)^{2}-\vec{q}^{2}\right) / \Lambda^{2}} \quad \text { Navarra, } \operatorname{PRD} 65(2002) \tag{1}
\end{equation*}
$$

with $q_{0}=\left(s+m_{D}^{2}-m_{K}^{2}\right) / 2 \sqrt{s}, \Lambda \sim 1-1.3 \mathrm{GeV}$. Previous work (2010): $\alpha=-1.6$ (with $\mu=1500 \mathrm{MeV}$) and $\Lambda=1200$. Recent work: Molina, Oset PLB811 2020, $\alpha=-1.474, \Lambda=1300$.

$$
\begin{aligned}
& \mathcal{L}=\frac{i G^{\prime}}{\sqrt{2}} \epsilon^{\mu \nu \alpha \beta}\left\langle\delta_{\mu} V_{\nu} \delta_{\alpha} V_{\beta} P\right\rangle \\
& \mathcal{L}_{V P P}=-i g\left\langle\left[P, \partial_{\mu} P\right] V^{\mu}\right\rangle
\end{aligned}
$$

Decay of the $D^{*} \bar{K}^{*}$ states to $D^{*} \bar{K}$

$$
\begin{align*}
& -i t=\frac{9}{2}\left(G^{\prime} g m_{D^{*}}\right)^{2} \int \frac{d^{4} q}{(2 \pi)^{4}} \epsilon^{i j k} \epsilon^{i^{\prime} j^{\prime} k^{\prime}}\left(\frac{1}{\left(p_{1}-q\right)^{2}-m_{\pi}^{2}+i \epsilon}\right)^{2} \\
& \times \frac{1}{q^{2}-m_{D^{*}}^{2}+i \epsilon} \frac{1}{\left(p_{1}+p_{2}-q\right)^{2}-m_{K}^{2}+i \epsilon} \\
& \times \epsilon^{j(1)} \epsilon^{m(2)} \epsilon^{k\left(3^{\prime}\right)} q^{i} q^{m} \epsilon^{\prime \prime(1)} \epsilon^{m^{\prime}(4)} \epsilon^{k^{\prime}\left(3^{\prime}\right)} q^{i^{\prime}} q^{m^{\prime}} F^{4}(q) \tag{2}
\end{align*}
$$

Taking now into account that,
$\int \frac{d^{3} q}{(2 \pi)^{3}} f\left(\vec{q}^{2}\right) q^{i} q^{m} q^{\prime} q^{m^{\prime}}=\frac{1}{15} \int \frac{d^{3} q}{(2 \pi)^{3}} f\left(\vec{q}^{2}\right) \vec{q}^{4}\left(\delta_{i m} \delta_{i^{\prime} m^{\prime}}+\delta_{i i i^{\prime}} \delta_{m m^{\prime}}+\delta_{i m^{\prime}} \delta_{m^{\prime} i}\right)$, one obtains,

$$
4 \epsilon^{j(1)} \epsilon^{m(2)} \epsilon^{j(3)} \epsilon^{m(4)}-\epsilon^{j(1)} \epsilon^{j(2)} \epsilon^{m(3)} \epsilon^{m(4)}-\epsilon^{j(1)} \epsilon^{m(2)} \epsilon^{m(3)} \epsilon^{j(4)}
$$

which is a combination of the spin projectors, $5 \mathcal{P}^{(1)}+3 \mathcal{P}^{(2)}$, zero component for $J=0$ (violates parity). Taking q on-shell,

$$
\operatorname{Im} t=-\frac{3}{2} \frac{1}{8 \pi}\left(G^{\prime} g m_{D^{*}}\right)^{2} q^{5}\left(\frac{1}{\left(m_{D}^{*}-\omega^{*}(q)\right)^{2}-\omega^{2}(q)}\right)^{2} \frac{1}{\sqrt{s}} F^{4}(q)
$$

Decay of the $D^{*} \bar{K}^{*}$ states to $D^{*} \bar{K}$

$l\left(J^{P}\right)$	$M[\mathrm{MeV}]$	$\Gamma[\mathrm{MeV}]$	Coupled channels	state
$0\left(2^{+}\right)$	2775	38	$D^{*} K^{*}$	$?$
$0\left(1^{+}\right)$	2861	20	$D^{*} \bar{K}^{*}$	$?$
$0\left(0^{+}\right)$	2866	57	$D^{*} \bar{K}^{*}$	$X_{0}(2866)$

Table 4: New results including the width of the $D^{*} K$ channel.

Figure 14: $|T|^{2}$ for $C=1, S=-1, I=0, J=0$ and $J=2$.

Decay of the $0\left(1^{+}\right)$state to $D^{*} \bar{K}$

Figure 15: $|T|^{2}$ for $C=1, S=-1, I=0, J=0$ and $J=1$.

Conclusions

Conclusions

- The $D_{s}^{+} \rightarrow \pi^{+} \pi^{-} \eta$ through the $a_{0}(980)$ proceeds via W-internal/external emission and not W-annhilation.
- The new BESIII data and the analysis shown here supports the $a_{0}(980)$ as a dynamically generated resonance from the $\pi \eta$ and $K \bar{K}$ channels.
- The new discovered $X_{0}(2900)$ is compatible with a $\bar{D}^{*} K^{*}\left(D^{*} \bar{K}^{*}\right)$ molecular state and there should be other similar states with $J^{P}=1^{+}, 2^{+}$.

