Implications of the $D_s^+ \to \pi^+ \pi^0 \eta$ decay in the nature of $a_0(980)$ and molecular interpretation of the new $X_0(2900)$

Raquel Molina, Ju-Jun Xie, Wei-Hong Liang, Lisheng Geng and E. Oset

1. Introduction

- 2. The $D_s^+
 ightarrow \pi^+ \pi^0 \eta$ decay and the nature of the $a_0(980)$
- 3. The new state $X_0(2900)$

4. Conclusions

Introduction

Hadrons

• 'Regular' hadrons: qq, qqq

• Exotics: $q\bar{q}q\bar{q}$, $qqqq\bar{q}$, qqg,... Not $q\bar{q}$: $J^{PC} = 0^{+-}$, 1^{-+} , 2^{+-} , 3^{-+} ,...

Dynamically Generated Resonances

Examples

- σ , $a_0(980)$, $f_0(980)$... Oller, Oset, Pelaez, PRL80(1998)
- N(1440) Krehl, Hanhart, Krewald and Speth, PRC62(2000)
- Λ(1405) Ramos, Oset, NPA635(1998); Jido, Meissner, Oller
 NPA725(2003); Hyodo, Weise PRC77(2008)
- $P_c(4450)$ Wu, Molina, Zou, Oset, PRL105(2010)
- New state $X_0(2900)$ Molina, Branz, Oset PRD82(2010)

The $D_s^+ \rightarrow \pi^+ \pi^0 \eta$ decay and the nature of the $a_0(980)$

Is the $a_0(980)$ a threshold effect or a true resonance?

Figure 1: Integrated cross section for $\gamma \gamma \rightarrow \pi^0 \eta$. Data: Oest(1990), Antreasyan(1986).

UChPT predictions

Channels: $K\bar{K}$, $\pi\eta$ Oller, Oset, NPA629(1998) Guo, Liu, Oller, Rusetski, Meissner PRD95(2017)

Figure 2: Fit to HadSpec data.

Figure 3: Left: $\pi\eta$ distribution. Data: WA76(1991). Right. Cross section $\gamma\gamma \rightarrow \pi\eta$. Data: Belle(2009).

Large N_c behaviour

"In particular, we have shown that the QCD large N_c scaling of the unitarized meson-meson amplitudes of chiral perturbation theory is in conflict with a $\bar{q}q$ nature for the lightest scalars [not so conclusively for the $a_0(980)$. The $a_0(980)$ behavior is more complicated. We cannot rule out a possible $\bar{q}q$ nature, or a sizable mixing], and strongly suggests a $\bar{q}\bar{q}qq$ or two-meson main component, maybe with some mixing with glue- balls, when possible."

Pelaez, PRL92(2004)

Amplitude analysis of $\chi_{c1} \rightarrow \eta \pi^+ \pi^-$

Figure 4: Projections in the (a) $\eta\pi$ -invariant mass from data, compared with a base-line fit (solid curve) and corresponding amplitudes (various dashed and dotted lines) from PRD95(2017), BESIII.

BESIII: $D_s^+ o \pi^+ \pi^0 \eta$

2019. BESIII has reported the so-called first observation of a pure W-annihilation decays $D_s^+ \rightarrow a_0^+ (980)\pi^0$ and $D_s^+ \rightarrow a_0^0 (980)\pi^+$

Figure 5: Annihilation mechanisms assumed in Ref.for the $D_s^+ \to \pi^0 a_0^+(980)$, $\pi^+ a_0^0(980)$. $\mathcal{B}[D_s^+ \to a_0(980)^+ \pi^0, a_0(980)^+ \to \pi^+ \eta] = (1.46 \pm 0.15 \pm 0.23)\%$

Topological classification of Weak decays

- 1. W-external emission 3. W-exchange
- 2. W-internal emission 4. W-annhilation
- 5. Horizontal W-loop
- 6. Vertical W-loop

L.L.Chau. PR(1983), PRD36(1987), PRD39(1989)

(Cabibbo favored) W-external emission? $D_s^+ \rightarrow \pi^+ \bar{s}s$, but $\bar{s}s$ has I = 0. Requires $f_0(980)$ upon hadronization. Not good

$D_s^+ \rightarrow \pi^+ \pi^0 \eta$: W-internal emission PLB803(2020)

Figure 6: $D_s^+ \to \pi^0 a_0^+(980)$, $\pi^+ a_0^0(980)$: *W* internal emission mechanisms, (a) Primary step; (b) hadronization of the $s\bar{d}$ pair; (c) hadronization of the $u\bar{s}$ pair.

Hadronization

$$\begin{split} M &= \begin{pmatrix} u\bar{u} & u\bar{d} & u\bar{s} \\ d\bar{u} & d\bar{d} & d\bar{s} \\ s\bar{u} & s\bar{d} & s\bar{s} \end{pmatrix}, \qquad \sum_{i} s\bar{q}_{i}q_{i}\bar{d} = \sum_{i} M_{3i} \qquad M_{i2} = (M^{2})_{32}, \\ \sum_{i} u\bar{q}_{i}q_{i}\bar{s} = \sum_{i} M_{1i} \qquad M_{i3} = (M^{2})_{13}, \\ (M^{2})_{32} &= \pi^{+}K^{-} - \frac{1}{\sqrt{2}}\pi^{0}\bar{K}^{0}, \qquad H_{1} = (\pi^{+}K^{-} - \frac{1}{\sqrt{2}}\pi^{0}\bar{K}^{0})K^{+}, \\ (M^{2})_{13} &= \frac{1}{\sqrt{2}}\pi^{0}K^{+} + \pi^{+}K^{0}, \qquad H_{2} = (\frac{1}{\sqrt{2}}\pi^{0}K^{+} + \pi^{+}K^{0})\bar{K}^{0}. \end{split}$$

$$D_s^+
ightarrow \pi^0 a_0^+$$
(980), $\pi^+ a_0^0$ (980)

Figure 7: Diagrammatic representation of the $K\bar{K}$ final state interaction of the states H_1 and H_2 leading to $\pi^+\pi^0\eta$ in the final states.

$$egin{aligned} t = & V_1[G_{Kar{K}}(M_{\pi^0\eta})t_{K^+K^- o \pi^0\eta}(M_{\pi^0\eta}) - rac{1}{\sqrt{2}}G_{Kar{K}}(M_{\pi^+\eta})t_{K^+ar{K}^0 o \pi^+\eta}(M_{\pi^+\eta})] \ & + V_2[G_{Kar{K}}(M_{\pi^0\eta})t_{K^0ar{K}^0 o \pi^0\eta}(M_{\pi^0\eta}) + rac{1}{\sqrt{2}}G_{Kar{K}}(M_{\pi^+\eta})t_{K^+ar{K}^0 o \pi^+\eta}(M_{\pi^+\eta})] \;, \end{aligned}$$

9

$$D_s^+
ightarrow \pi^0 a_0^+$$
(980), $\pi^+ a_0^0$ (980)

Chiral Unitary approach

Isospin

$$T = [1 - VG]^{-1}V$$

Oller, Oset, Pelaez, PRL80(1998) Xie, Dai, Oset, PLB742(2015) $q_{\rm max} = 600 \text{ MeV}$ We obtain,

$$\begin{split} t_{K^+K^- \to \pi^0 \eta} &= -\frac{1}{\sqrt{2}} t_{K\bar{K} \to \pi\eta}^{I=1}, \\ t_{K^0\bar{K}^0 \to \pi^0 \eta} &= \frac{1}{\sqrt{2}} t_{K\bar{K} \to \pi\eta}^{I=1}, \\ t_{K^+\bar{K}^0 \to \pi^+ \eta} &= -t_{K\bar{K} \to \pi\eta}^{I=1}, \end{split}$$

$$t = \bar{V}\left[G_{K\bar{K}}(M_{\pi^0\eta})t_{K\bar{K}\to\pi\eta}^{I=1}(M_{\pi^0\eta}) - G_{K\bar{K}}(M_{\pi^+\eta})t_{K\bar{K}\to\pi\eta}^{I=1}(M_{\pi^+\eta})\right]$$

with $\bar{V}=(\mathit{V}_2-\mathit{V}_1)/\sqrt{2}$.

Note that, with the isospin multiplets (u, d), $(-\bar{d}, \bar{u})$,

$$D_s^+
ightarrow \pi^0 a_0^+$$
(980), $\pi^+ a_0^0$ (980)

Invariant mass distribution

$$rac{d^2\Gamma}{dM_{\pi^0\eta}dM_{\pi^+\eta}} = rac{1}{(2\pi)^3}rac{M_{\pi^0\eta}M_{\pi^+\eta}}{8M_{D_s^+}^2}|t|^2$$

Figure 8: $d\Gamma/dM_{\pi^0\eta}$ as a function of $M_{\pi^0\eta}$. Dashed line with no $M_{\pi^+\pi^0}$ restriction. Solid line with the restriction of $M_{\pi^+\pi^0} > 1$ GeV.

11

$D_s^+ ightarrow \pi^0 a_0^+$ (980), $\pi^+ a_0^0$ (980)

Figure 9: Event distribution in 40 MeV bins of $d\Gamma/dM_{\pi\eta}$ compared with experiment with $M_{\pi^+\pi^0} > 1$ GeV. (a) for $\pi^0\eta$ distribution; (b) for $\pi^+\eta$ distribution. The dashed lines are taken from [1] after the non πa_0 events are removed. Molina, Xie, Liang, Geng and Oset, PLB803(2020)

[1] BESIII Collaboration, PRL123(2019) But...this is not the end of the story!

Arxiv: 2102.0534, Ling, Liu, Lu, Geng and Xie

Inspired in the work of Hsiao et al., EPJC80(895), the authors find that both mechanisms, internal and external-W emission through triangle diagrams are relevant.

Figure 10: a) External *W*-emission mechanism for $D_s^+ \rightarrow \rho^+ \eta$ and b) internal *W*-conversion mechanisms.

Figure 12: Triangle rescattering diagrams for $D_s^+ \to (K^{*0}\bar{K}^0 \to)\pi^+\pi^0\eta$ and $D_s^+ \to (K^+\bar{K}^{*0} \to)\pi^+\pi^0\eta.$

The new state $X_0(2900)$

LHCb (2020)

Two states $J^P = 0^+, 1^-$ decaying to $\overline{D}K$. First clear example of an heavy-flavor exotic tetraquark, $\sim \overline{c}\overline{s}ud$.

$$\begin{split} X_0(2866) &: M = 2866 \pm 7 \quad \text{and} \quad \Gamma = 57.2 \pm 12.9 \, \mathrm{MeV}, \\ X_1(2900) &: M = 2904 \pm 5 \quad \mathrm{and} \quad \Gamma = 110.3 \pm 11.5 \, \mathrm{MeV}. \end{split}$$

D. Johnson (CERN), LHC seminar, $B \rightarrow DDh^-$; a new (virtual) laboratory for exotic searches at LHCb p. August 11 (2020)

Vector-vector scattering Bando, Kugo, Yamawaki

$$\mathcal{L}_{III} = -\frac{1}{4} \langle V_{\mu\nu} V^{\mu\nu} \rangle \longrightarrow \mathcal{L}_{III}^{(3V)} = ig \langle (\partial_{\mu} V_{\nu} - \partial_{\nu} V_{\mu}) V^{\mu} V^{\nu} \rangle$$
$$\mathcal{L}_{III}^{(c)} = \frac{g^2}{2} \langle V_{\mu} V_{\nu} V^{\mu} V^{\nu} - V_{\nu} V_{\mu} V^{\mu} V^{\nu} \rangle$$

 $V_{\mu} =$ $V_{\mu\nu} =$ $\begin{pmatrix} \frac{\rho^{0}}{\sqrt{2}} + \frac{\omega}{\sqrt{2}} & \rho^{+} & K^{*+} & \bar{D}^{*0} \\ \rho^{-} & -\frac{\rho^{0}}{\sqrt{2}} + \frac{\omega}{\sqrt{2}} & K^{*0} & D^{*-} \\ K^{*-} & \bar{K}^{*0} & \phi & D^{*-}_{s} \\ D^{*0} & D^{*+} & D^{*+}_{s} & J/\psi \end{pmatrix}$ $\partial_{\mu}V_{\nu} - \partial_{\nu}V_{\mu} - ig[V_{\mu}, V_{\nu}]$ $g = \frac{M_V}{2f}$ +b) c)dà

Molina, Branz, Oset, PRD82(2010)

Figure 13: The $D^*\bar{K}^* \to D^*\bar{K}^*$ interaction at the tree level; (a) contact term; (b) exchange of light vectors; (c) exchange of a heavy vector.

J	Amplitude	Contact	V-exchange	\sim Total
0	$D^*\bar{K}^* \to D^*\bar{K}^*$	4g ²	$-\frac{g^2(p_1+p_4).(p_2+p_3)}{m_{D^*}^2} + \frac{1}{2}g^2(\frac{1}{m_{\omega}^2} - \frac{3}{m_{\rho}^2})(p_1+p_3).(p_2+p_4)$	$-9.9g^{2}$
1	$D^*\bar{K}^* \to D^*\bar{K}^*$	0	$\frac{g^2(\rho_1+\rho_4).(\rho_2+\rho_3)}{m_D^2*} + \frac{1}{2}g^2(\frac{1}{m_\omega^2} - \frac{3}{m_\rho^2})(\rho_1+\rho_3).(\rho_2+\rho_4)$	-10.2g ²
2	$D^*\bar{K}^* \to D^*\bar{K}^*$	-2g ²	$-\frac{g^2(\rho_1+\rho_4).(\rho_2+\rho_3)}{m_{D_{\epsilon}^*}^2}+\frac{1}{2}g^2(\frac{1}{m_{\omega}^2}-\frac{3}{m_{\rho}^2})(\rho_1+\rho_3).(\rho_2+\rho_4)$	$-15.9g^{2}$

Table 1: Tree level amplitudes for $D^*\bar{K}^*$ in I = 0. Last column: $(V_{\text{th.}})$.

16

New flavor exotic tetraquark (C = 1, S = -1)

Spin projectors $T = [\hat{1} - VG]^{-1}V$ $\mathcal{P}^{(0)} = \frac{1}{2} \epsilon_{\mu} \epsilon^{\mu} \epsilon_{\nu} \epsilon^{\nu}$ D^* $\mathcal{P}^{(1)} = \frac{1}{2} (\epsilon_{\mu} \epsilon_{\nu} \epsilon^{\mu} \epsilon^{\nu} - \epsilon_{\mu} \epsilon_{\nu} \epsilon^{\nu} \epsilon^{\mu})$ D π $\mathcal{P}^{(2)} = \left\{ \frac{1}{2} (\epsilon_{\mu} \epsilon_{\nu} \epsilon^{\mu} \epsilon^{\nu} + \epsilon_{\mu} \epsilon_{\nu} \epsilon^{\nu} \epsilon^{\mu}) - \frac{1}{2} \epsilon_{\mu} \epsilon^{\mu} \epsilon_{\nu} \epsilon^{\nu} \right\} \,.$ \bar{K} \bar{K}^* \bar{K}^* $I(J^{P})$ M[MeV]Γ[MeV] Channels state $0(2^{+})$ 2572 23 $D^*K^*, D^*_{\varsigma}\phi, D^*_{\varsigma}\omega$ $D_{s2}(2572)$ $0(1^{+})$ 2707 $D^*K^*, D^*_s\phi, D^*_s\omega$ - $0(0^{+})$ 71 $D^*K^*, D^*_s\phi, D^*_s\omega$ 2683

Table 2: States with C = 1, S = 1, I = 0.

$I(J^P)$	M[MeV]	$\Gamma[{ m MeV}]$	Channels	state
0(2+)	2733	36	$D^*ar{K}^*$?
$0(1^{+})$	2839	-	$D^*ar{K}^*$?
0(0^+)	2848	59	$D^*ar{K}^*$	$X_0(2866)$

Table 3: States with C = 1, S = -1, I = 0.

New flavor exotic tetraquark (C = 1, S = -1)

Two-meson loop function:

$$\begin{aligned} G_i(s) &= \frac{1}{16\pi^2} \left(\alpha + \mathrm{Log} \frac{M_1^2}{\mu^2} + \frac{M_2^2 - M_1^2 + s}{2s} \mathrm{Log} \frac{M_2^2}{M_1^2} \right. \\ &+ \frac{p}{\sqrt{s}} \left(\mathrm{Log} \frac{s - M_2^2 + M_1^2 + 2p\sqrt{s}}{-s + M_2^2 - M_1^2 + 2p\sqrt{s}} + \mathrm{Log} \frac{s + M_2^2 - M_1^2 + 2p\sqrt{s}}{-s - M_2^2 + M_1^2 + 2p\sqrt{s}} \right) \right) \,, \end{aligned}$$

Form factor (box-diagram):

 $F(q) = e^{((\rho_1^0 - q^0)^2 - \vec{q}^2)/\Lambda^2}$ Navarra, PRD65(2002)

(1)

with $q_0 = (s + m_D^2 - m_K^2)/2\sqrt{s}$, $\Lambda \sim 1 - 1.3$ GeV. Previous work (2010): $\alpha = -1.6$ (with $\mu = 1500$ MeV) and $\Lambda = 1200$. Recent work: Molina, Oset PLB811 2020, $\alpha = -1.474$, $\Lambda = 1300$. $D^*(p_1)$ $D^*(p_3)$

$$egin{split} \mathcal{L} &= rac{iG'}{\sqrt{2}} \epsilon^{\mu
ulphaeta} \langle \delta_{\mu} V_{
u} \delta_{lpha} V_{eta} P
angle \ \mathcal{L}_{VPP} &= -ig \langle [P, \partial_{\mu} P] V^{\mu}
angle \end{split}$$

Decay of the $D^*\bar{K}^*$ states to $D^*\bar{K}$

$$-it = \frac{9}{2} (G'gm_{D^*})^2 \int \frac{d^4q}{(2\pi)^4} \epsilon^{ijk} \epsilon^{i'j'k'} \left(\frac{1}{(p_1 - q)^2 - m_{\pi}^2 + i\epsilon}\right)^2 \\ \times \frac{1}{q^2 - m_{D^*}^2 + i\epsilon} \frac{1}{(p_1 + p_2 - q)^2 - m_K^2 + i\epsilon} \\ \times \epsilon^{j(1)} \epsilon^{m(2)} \epsilon^{k(3')} q^i q^m \epsilon^{j'(1)} \epsilon^{m'(4)} \epsilon^{k'(3')} q^{i'} q^{m'} F^4(q)$$
(2)

Taking now into account that,

$$\int \frac{d^3q}{(2\pi)^3} f(\vec{q}^2) q^i q^m q^{i'} q^{m'} = \frac{1}{15} \int \frac{d^3q}{(2\pi)^3} f(\vec{q}^2) \vec{q}^4 (\delta_{im} \delta_{i'm'} + \delta_{ii'} \delta_{mm'} + \delta_{im'} \delta_{m'i}) ,$$
one obtains

$$4\epsilon^{j(1)}\epsilon^{m(2)}\epsilon^{j(3)}\epsilon^{m(4)} - \epsilon^{j(1)}\epsilon^{j(2)}\epsilon^{m(3)}\epsilon^{m(4)} - \epsilon^{j(1)}\epsilon^{m(2)}\epsilon^{m(3)}\epsilon^{j(4)}$$

which is a combination of the spin projectors, $5\mathcal{P}^{(1)} + 3\mathcal{P}^{(2)}$, zero component for J = 0 (violates parity). Taking q on-shell,

$$\mathrm{Im}t = -\frac{3}{2}\frac{1}{8\pi}(G'gm_{D^*})^2q^5\left(\frac{1}{(m_D^*-\omega^*(q))^2-\omega^2(q)}\right)^2\frac{1}{\sqrt{s}}F^4(q)$$

$I(J^P)$	M[MeV]	$\Gamma[MeV]$	Coupled channels	state
$0(2^+)$	2775	38	$D^*ar{K}^*$?
$0(1^+)$	2861	20	$D^*ar{K}^*$?
$0(0^+)$	2866	57	$D^*ar{K}^*$	$X_0(2866)$

Table 4: New results including the width of the D^*K channel.

Figure 14: $|T|^2$ for C = 1, S = -1, I = 0, J = 0 and J = 2.

Decay of the $0(1^+)$ state to $D^*\bar{K}$

Figure 15: $|T|^2$ for C = 1, S = -1, I = 0, J = 0 and J = 1.

Conclusions

- The $D_s^+ \to \pi^+\pi^-\eta$ through the $a_0(980)$ proceeds via W-internal/external emission and not W-annhilation.
- The new BESIII data and the analysis shown here supports the $a_0(980)$ as a dynamically generated resonance from the $\pi\eta$ and $K\bar{K}$ channels.
- The new discovered $X_0(2900)$ is compatible with a $\overline{D}^*K^*(D^*\overline{K}^*)$ molecular state and there should be other similar states with $J^P = 1^+, 2^+$.