

$\begin{array}{l} \mbox{Hadronic contributions to }g-2 \mbox{ of the muon} \\ \mbox{ - theory - } \end{array}$

Bastian Kubis

HISKP (Theorie) & BCTP Universität Bonn, Germany

20/5/2021

Outline

The anomalous magnetic moment of the muon

Hadronic vacuum polarisation

- The $\pi^+\pi^-\pi^0$ channel Hoferichter, Hoid, BK, JHEP **1908** (2019) 137
- The $\pi^0 \gamma$ channel Hoid, Hoferichter, BK, Eur. Phys. J. 80 (2020) 988

Hadronic light-by-light scattering

- Dispersive analysis of the π^0 transition form factor
- High-energy asymptotics Hoferichter, Hoid, BK, Leupold, Schneider, Phys. Rev. Lett. **121** (2018) 112002; JHEP **1810** (2018) 141
- Putting pieces together

Aoyama et al., Phys. Rept. 887 (2020) 1

Summary / Outlook

The anomalous magnetic moment of the muon

gyromagnetic ratio: magnetic moment ↔ spin

$$\vec{\mu} = g \frac{e}{2m} \vec{S}$$
 Dirac: $g_{\mu} = 2$

- rad. corr.: $g_{\mu} = 2(1 + a_{\mu})$, a_{μ} "anomalous magnetic moment"
- one of the most precisely measured quantities in particle physics

Hadronic contributions to a_{μ}

-				
		$a_{\mu} \left[10^{-11} \right]$	$\Delta a_{\mu} [10^{-11}]$	
-	experiment	116 592 061.	41.	BNL E821 2006 + Fermilab 2021
_	QED $\mathcal{O}(\alpha)$	116 140 973.321	0.023	
	$QED\;\mathcal{O}(lpha^2)$	413 217.626	0.007	
	$QED\;\mathcal{O}(lpha^3)$	30 141.902	0.000	Aoyama et al. 2020
	$QED\;\mathcal{O}(lpha^4)$	381.004	0.017	
	$QED\;\mathcal{O}(lpha^5)$	5.078	0.006	
	QED total	116 584 718.931	0.030	2
-	electroweak	153.6	1.0	\leq
	had. VP (LO)	6931.	40.	$\mu \rightarrow \mu$
	had. VP (NLO)	-98.3	0.7	
	had. LbL	92.	19.	
-	total	116 591 810.	43.	hadrons

Hadronic contributions to a_{μ}

	$a_{\mu} \left[10^{-11} \right]$	$\Delta a_{\mu} [10^{-11}]$	
experiment	116 592 061.	41.	BNL E821 2006 + Fermilab 2021
QED $\mathcal{O}(\alpha)$	116 140 973.321	0.023	-
QED $\mathcal{O}(\alpha^2)$	413 217.626	0.007	
QED $\mathcal{O}(lpha^3)$	30 141.902	0.000	Aoyama et al. 2020
${\sf QED}\; {\cal O}(lpha^4)$	381.004	0.017	
QED $\mathcal{O}(lpha^5)$	5.078	0.006	
QED total	116 584 718.931	0.030	2
electroweak	153.6	1.0	hadrons
ad. VP (LO)	6931.	40.	
ad. VP (NLO)	-98.3	0.7	
had. LbL	92.	19.	2 $>$ $>$
total	116 591 810.	43.	$ \mu$
	experiment QED $\mathcal{O}(\alpha)$ QED $\mathcal{O}(\alpha^2)$ QED $\mathcal{O}(\alpha^3)$ QED $\mathcal{O}(\alpha^4)$ QED $\mathcal{O}(\alpha^5)$ QED total electroweak ad. VP (LO) ad. VP (NLO) had. LbL total	$a_{\mu} [10^{-11}]$ experiment116 592 061.QED $\mathcal{O}(\alpha)$ 116 140 973.321QED $\mathcal{O}(\alpha^2)$ 413 217.626QED $\mathcal{O}(\alpha^2)$ 413 217.626QED $\mathcal{O}(\alpha^3)$ 30 141.902QED $\mathcal{O}(\alpha^4)$ 381.004QED $\mathcal{O}(\alpha^4)$ 5.078QED total116 584 718.931electroweak153.6ad. VP (LO)6931.ad. VP (NLO)-98.3had. LbL92.total116 591 810.	$a_{\mu} [10^{-11}]$ $\Delta a_{\mu} [10^{-11}]$ experiment116 592 061.41.QED $\mathcal{O}(\alpha)$ 116 140 973.3210.023QED $\mathcal{O}(\alpha^2)$ 413 217.6260.007QED $\mathcal{O}(\alpha^3)$ 30 141.9020.000QED $\mathcal{O}(\alpha^4)$ 381.0040.017QED $\mathcal{O}(\alpha^5)$ 5.0780.006QED total116 584 718.9310.030electroweak153.61.0ad. VP (LO)6931.40.ad. VP (NLO)-98.30.7had. LbL92.19.total116 591 810.43.

Hadronic vacuum polarisation

- how to control hadronic vacuum polarisation?
- characteristic scale set by muon mass

 —> this is not a perturbative QCD problem!
- dispersion relations to the rescue: use the optical theorem!

$$\propto \sigma_{\rm tot}(e^+e^- \rightarrow {\rm hadrons})$$

Hadronic vacuum polarisation

- how to control hadronic vacuum polarisation?
- characteristic scale set by muon mass

 —> this is not a perturbative QCD problem!
- dispersion relations to the rescue: use the optical theorem!

$$a_{\mu}^{\text{had VP}} \propto \int_{4M_{\pi}^2}^{\infty} ds \, K(s) \sigma_{\text{tot}}(e^+e^- \to \text{hadrons})$$

- K(s): kinematical function, for large s: $K(s) \propto 1/s$, $\sigma_{tot}(e^+e^- \rightarrow hadrons) \propto 1/s$
- more than 75% of $a_{\mu}^{\rm had \ VP}$ given by energies $s \leq 1 \, {\rm GeV^2}\,$ Jegerlehner, Nyffeler 2009
- well constrained by data

BABAR, BESIII, CMD, KLOE, SND, ...

 \longrightarrow see talk by A. Denig

Hadronic light-by-light scattering

- hadronic light-by-light:
 - \triangleright subleading in $\alpha_{\rm QED}$
 - large relative uncertainty

• different contributions calculated or estimated (in 10⁻¹¹):

→ increasing systematic control over HLbL using dispersion-theoretical approach

Aoyama et al. 2020

Hadronic light-by-light: dispersive approach

Colangelo, Hoferichter, Procura, Stoffer 2014, 2015

- HLbL tensor $\Pi^{\mu\nu\lambda\sigma}$: Lorentz invariance \longrightarrow 138 (136) scalar functions Eichmann et al. 2014
- gauge invariance: Bardeen, Tung 1968; Tarrach 1975

$$\Pi^{\mu\nu\lambda\sigma} = \sum_{i=1}^{54} T_i^{\mu\nu\lambda\sigma} \Pi_i$$

 \longrightarrow 7 distinct structures, 47 related by crossing

Hadronic light-by-light: dispersive approach

Colangelo, Hoferichter, Procura, Stoffer 2014, 2015

- HLbL tensor $\Pi^{\mu\nu\lambda\sigma}$: Lorentz invariance \mathcal{V} \longrightarrow 138 (136) scalar functions Eichmann et al. 2014
- gauge invariance: Bardeen, Tung 1968; Tarrach 1975

$$\Pi^{\mu\nu\lambda\sigma} = \sum_{i=1}^{54} T_i^{\mu\nu\lambda\sigma} \Pi_i$$

 \longrightarrow 7 distinct structures, 47 related by crossing

• master formula:

$$a_{\mu}^{\text{HLbL}} = -e^{6} \int \frac{d^{4}q_{1}}{(2\pi)^{4}} \frac{d^{4}q_{2}}{(2\pi)^{4}} \frac{\sum_{i=1}^{12} \hat{T}_{i}(q_{1}, q_{2}; p) \hat{\Pi}_{i}(q_{1}, q_{2}, -q_{1}^{\mu} - q_{2})}{\hat{q}_{1}^{2} q_{2}^{2} (q_{1} + q_{2})^{2} [(p + q_{1})^{2} - m_{\mu}^{2}] [(p - q_{2})^{2} - m_{\mu}^{2}]}$$

• \hat{T}_i : known kernels

 $\hat{\Pi}_i$: dispersively \leftrightarrow measurable form factors / scatt. amplitudes

 $\Pi^{\mu\nu\lambda\sigma}$

hadrons

Hadronic light-by-light: dispersive approach

Colangelo, Hoferichter, Procura, Stoffer 2014, 2015

- HLbL tensor $\Pi^{\mu\nu\lambda\sigma}$: Lorentz invariance \longrightarrow 138 (136) scalar functions Eichmann et al. 2014
- gauge invariance: Bardeen, Tung 1968; Tarrach 1975

$$\Pi^{\mu\nu\lambda\sigma} = \sum_{i=1}^{54} T_i^{\mu\nu\lambda\sigma} \Pi_i$$

 \longrightarrow 7 distinct structures, 47 related by crossing

• master formula:

$$a_{\mu}^{\text{HLbL}} = -e^{6} \int \frac{d^{4}q_{1}}{(2\pi)^{4}} \frac{d^{4}q_{2}}{(2\pi)^{4}} \frac{\sum_{i=1}^{12} \hat{T}_{i}(q_{1}, q_{2}; p) \hat{\Pi}_{i}(q_{1}, q_{2}, -q_{1}^{\mu} - q_{2})}{q_{1}^{2}q_{2}^{2}(q_{1} + q_{2})^{2}[(p + q_{1})^{2} - m_{\mu}^{2}][(p - q_{2})^{2} - m_{\mu}^{2}]}$$

• \hat{T}_i : known kernels

 $\hat{\Pi}_i$: dispersively \leftrightarrow measurable form factors / scatt. amplitudes

alternative approaches: disp. rel. for F₂
 Pauk, Vanderhaeghen 2014
 Schwinger sum rule
 Hagelstein, Pascalutsa 2017

 $\Pi^{\mu\nu\lambda\sigma}$

hadrons

Hadronic light-by-light: the π^0 pole

• largest individual HLbL contribution:

 π^0 pole term singly / doubly virtual transition form factors (TFFs) $F_{\pi^0\gamma^*\gamma^*}(q^2, 0)$ and $F_{\pi^0\gamma^*\gamma^*}(q_1^2, q_2^2)$

• normalisation fixed by Wess–Zumino–Witten (WZW) anomaly:

$$F_{\pi^0\gamma^*\gamma^*}(0,0) = \frac{1}{4\pi^2 F_{\pi}}$$

 \longrightarrow measured at 0.75% (F_{π} : pion decay constant) PrimEx 2020

- two-loop integral with constant form factors does not converge
 - \rightarrow no full prediction from e.g. chiral perturbation theory
 - \rightarrow sensible high-energy behaviour required!

Pion-pole contribution to a_{μ}

• 3-dimensional integral representation: Jegerlehner, Nyffeler 2009

- $w_{1/2}(Q_1, Q_2, \tau)$: kinematical weight functions, $\tau = \cos \theta$
- $F_{\pi^0\gamma^*\gamma^*}(-Q_1^2,-Q_2^2)$: space-like on-shell π^0 TFF

Pion-pole contribution to a_{μ}

• weight functions $w_{1/2}(Q_1, Q_2, \tau = 0)$:

- concentrated for $Q_i \leq 0.5 \,\mathrm{GeV}$
 - \longrightarrow pion-pole contribution dominantly from low-energy region
 - → pion transition form factor can be determined model-independently and with high precision using dispersion relations

Dispersive analysis of $\pi^0 o \gamma^* \gamma^*$

• isospin decomposition:

$$F_{\pi^0\gamma^*\gamma^*}(q_1^2, q_2^2) = F_{vs}(q_1^2, q_2^2) + F_{vs}(q_2^2, q_1^2)$$

• analyse the leading hadronic intermediate states:

Hoferichter et al. 2014

isovector photon: 2 pions

 \propto pion vector form factor very well known from $e^+e^- \rightarrow \pi^+\pi^-$

 $\times \gamma^* \to 3\pi$ P-wave amplitude discussed next: Khuri–Treiman

Dispersive analysis of $\pi^0 o \gamma^* \gamma^*$

• isospin decomposition:

$$F_{\pi^0\gamma^*\gamma^*}(q_1^2, q_2^2) = F_{vs}(q_1^2, q_2^2) + F_{vs}(q_2^2, q_1^2)$$

• analyse the leading hadronic intermediate states:

isovector photon: 2 pions

 \propto pion vector form factor very well known from $e^+e^- \rightarrow \pi^+\pi^-$

× $\gamma^* \rightarrow 3\pi$ P-wave amplitude discussed next: Khuri–Treiman > isoscalar photon: 3 pions

Dispersive analysis of $\pi^0 o \gamma^* \gamma^*$

• isospin decomposition:

$$F_{\pi^0\gamma^*\gamma^*}(q_1^2, q_2^2) = F_{vs}(q_1^2, q_2^2) + F_{vs}(q_2^2, q_1^2)$$

• analyse the leading hadronic intermediate states:

isovector photon: 2 pions

 \propto pion vector form factor very well known from $e^+e^- \rightarrow \pi^+\pi^-$

 $\times \gamma^*
ightarrow 3\pi$ P-wave amplitude discussed next: Khuri–Treiman

▷ isoscalar photon: 3 pions

dominated by narrow resonances ω, ϕ

Khuri–Treiman representation $\gamma^* ightarrow 3\pi$

of. talk by E. Passemar on $\eta \to 3\pi$ • $\gamma^*(q^2) \to 3\pi$: crossing symmetric $s \leftrightarrow t \leftrightarrow u$ P-wave isobars $\mathcal{F}(s, t, u; q^2) = \mathcal{F}(s, q^2) + \mathcal{F}(t, q^2) + \mathcal{F}(u, q^2)$

• WZW low-energy theorem $\mathcal{F}(0,0,0;0) = F_{3\pi} = \frac{1}{4\pi^2 F_{\pi}^3}$

Khuri–Treiman representation $\gamma^* ightarrow 3\pi$

cf. talk by E. Passemar on $\eta \rightarrow 3\pi$

- $\gamma^*(q^2) \to 3\pi$: crossing symmetric $s \leftrightarrow t \leftrightarrow u$ P-wave isobars $\mathcal{F}(s, t, u; q^2) = \mathcal{F}(s, q^2) + \mathcal{F}(t, q^2) + \mathcal{F}(u, q^2)$
- WZW low-energy theorem $\mathcal{F}(0,0,0;0) = F_{3\pi} = \frac{1}{4\pi^2 F_{\pi}^3}$
- (s-channel) P-wave projection: $f_1(s,q^2) = \mathcal{F}(s,q^2) + \hat{\mathcal{F}}(s,q^2)$ $\hat{\mathcal{F}}(s,q^2)$: contribution from crossed channels
- left-hand cut $\hat{\mathcal{F}}(s, q^2)$ and right-hand cut $\mathcal{F}(s, q^2)$ self-consistent:

$$\mathcal{F}(s,q^2) = \underbrace{\Omega(s)}_{\text{Omnès}} \left\{ a(q^2) + \frac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{ds'}{s'} \frac{\sin \delta_1^1(s') \hat{\mathcal{F}}(s',q^2)}{|\Omega(s')|(s'-s)|} \right\}$$
$$= \underbrace{\operatorname{output}_{\text{Omnès}}}_{\text{Pairwise rescattering to all orders}} + \underbrace{\operatorname{output}_{\text{Hoferichter et al. 2014}}_{\text{Hoferichter et al. 2014}} \right\}$$

From $e^+e^-
ightarrow 3\pi$ to $e^+e^-
ightarrow \pi^0\gamma^*$

• amplitude for $e^+e^- \rightarrow 3\pi \propto \mathcal{F}(s,q^2) + \mathcal{F}(t,q^2) + \mathcal{F}(u,q^2)$

$$\mathcal{F}(s,q^2) = \Omega(s) \left\{ \frac{a(q^2)}{\pi} + \frac{s}{\pi} \int_{4M_\pi^2}^{\infty} \frac{ds'}{s'} \frac{\sin \delta_1^1(s') \hat{\mathcal{F}}(s',q^2)}{|\Omega(s')|(s'-s)|} \right\}$$

subtraction function $a(q^2)$ adjusted to reproduce $e^+e^- \rightarrow 3\pi$

parameterisation:

$$a(q^2) = \frac{F_{3\pi}}{3} + \frac{q^2}{\pi} \int_{\text{thr}}^{\infty} ds' \frac{\text{Im}BW(s')}{s'(s'-q^2)} + C_n(q^2)$$

 $BW(q^2)$: poles ω, ϕ, ω' ; $C_n(q^2)$: conformal pol. \longrightarrow inelasticities

From $e^+e^-
ightarrow 3\pi$ to $e^+e^-
ightarrow \pi^0\gamma^*$

• amplitude for $e^+e^- \rightarrow 3\pi \propto \mathcal{F}(s,q^2) + \mathcal{F}(t,q^2) + \mathcal{F}(u,q^2)$

$$\mathcal{F}(s,q^2) = \Omega(s) \left\{ \frac{a(q^2)}{\pi} + \frac{s}{\pi} \int_{4M_\pi^2}^{\infty} \frac{ds'}{s'} \frac{\sin \delta_1^1(s') \hat{\mathcal{F}}(s',q^2)}{|\Omega(s')|(s'-s)|} \right\}$$

subtraction function $a(q^2)$ adjusted to reproduce $e^+e^- \rightarrow 3\pi$

parameterisation:

$$a(q^2) = \frac{F_{3\pi}}{3} + \frac{q^2}{\pi} \int_{\text{thr}}^{\infty} ds' \frac{\text{Im}BW(s')}{s'(s'-q^2)} + C_n(q^2)$$

 $BW(q^2)$: poles ω, ϕ, ω' ; $C_n(q^2)$: conformal pol. \longrightarrow inelasticities • fit to $e^+e^- \rightarrow 3\pi$ data \longrightarrow prediction for $e^+e^- \rightarrow \pi^0\gamma^{(*)}$

Fit results $e^+e^- ightarrow 3\pi$ data up to 1.8 GeV

Hoferichter, Hoid, BK 2019

- black / gray bands represent fit and total uncertainties
- vacuum polarisation removed from the cross section

Fit results: 3π contribution to HVP

- second largest exclusive channel next to $\pi^+\pi^-$
- central result for the 3π contribution to HVP:

$$a_{\mu}^{3\pi}|_{\leq 1.8\,{\rm GeV}} = 462(6)(6) \times 10^{-11} = 462(8) \times 10^{-11}$$

Hoferichter, Hoid, BK 2019

• independent cross-check with dispersion-theoretical amplitude: analyticity, unitarity, QCD constraints

Davier et al. 2017, 2019	Keshavarzi et al. 2018	Jegerlehner 2017
462.0(14.5)	477.0(8.9)	443(15)

• analogous to $\pi^+\pi^-$

Colangelo, Hoferichter, Stoffer 2018

Comparison to $e^+e^- ightarrow \pi^0\gamma$ data; HVP

Hoferichter, Hoid, BK, Leupold, Schneider 2018

- "prediction"—no further parameters adjusted
- data very well reproduced

Comparison to $e^+e^- ightarrow \pi^0\gamma$ data; HVP

• fit instead for $\pi^0 \gamma$ HVP contribution:

Hoid, Hoferichter, BK 2020

 $a_{\mu}^{\pi^{0}\gamma}|_{\leq 1.35 \,\mathrm{GeV}} = 43.8(6)(1) \times 10^{-11} = 43.8(6) \times 10^{-11}$

Asymptotics and pQCD constraints (1)

- so far: dispersion relation based on (dominant) 2π , 3π \rightarrow high precision at low energies
- double-spectral-function representation:

$$F_{\pi^{0}\gamma^{*}\gamma^{*}}(q_{1}^{2},q_{2}^{2}) = \frac{1}{\pi^{2}} \int_{4M_{\pi}^{2}}^{\infty} dx \int_{s_{\text{thr}}}^{\infty} dy \frac{\rho^{\text{disp}}(x,y)}{(x-q_{1}^{2})(y-q_{2}^{2})}$$
$$\rho^{\text{disp}}(x,y) = \frac{q_{\pi}^{3}(x)}{12\pi\sqrt{x}} \text{Im} \left[F_{\pi}^{V*}(x)f_{1}(x,y) \right] + [x \leftrightarrow y]$$

Asymptotics and pQCD constraints (1)

- so far: dispersion relation based on (dominant) 2π , 3π \rightarrow high precision at low energies
- double-spectral-function representation:

$$F_{\pi^{0}\gamma^{*}\gamma^{*}}(q_{1}^{2},q_{2}^{2}) = \frac{1}{\pi^{2}} \int_{4M_{\pi}^{2}}^{\infty} dx \int_{s_{\text{thr}}}^{\infty} dy \frac{\rho^{\text{disp}}(x,y)}{(x-q_{1}^{2})(y-q_{2}^{2})}$$
$$\rho^{\text{disp}}(x,y) = \frac{q_{\pi}^{3}(x)}{12\pi\sqrt{x}} \text{Im} \left[F_{\pi}^{V*}(x)f_{1}(x,y) \right] + [x \leftrightarrow y]$$

• asymptotically: pion wave function $\phi_{\pi}(x) = 6x(1-x) + \dots$

$$F_{\pi^0\gamma^*\gamma^*}(q_1^2, q_2^2) = -\frac{2F_\pi}{3} \int_0^1 dx \frac{\phi_\pi(x)}{xq_1^2 + (1-x)q_2^2} + \mathcal{O}(Q^{-4})$$

implies asymptotically

Brodsky, Lepage 1979–1981

$$F_{\pi^0\gamma^*\gamma^*}(-Q^2,-Q^2) \sim \frac{2F_{\pi}}{3Q^2}, \qquad F_{\pi^0\gamma^*\gamma^*}(-Q^2,0) \sim \frac{2F_{\pi}}{Q^2}$$

 \rightarrow rewrite this as double-spectral representation $\rho^{pQCD}(x, y)$ Khodjamirian 1999; Hoferichter et al. 2018

Asymptotics and pQCD constraints (2)

- dispersion-theoretical $\rho^{\text{disp}}(x,y)$ at low energies $x,y \leq s_m$
- doubly-asymptotic $\rho^{pQCD}(x, y)$ for $x, y > s_m$ \longrightarrow does not contribute to singly-virtual TFF

$$F_{\pi^{0}\gamma^{*}\gamma^{*}}(q_{1}^{2},q_{2}^{2}) = \frac{1}{\pi^{2}} \int_{0}^{s_{m}} dx \int_{0}^{s_{m}} dy \frac{\rho^{\text{disp}}(x,y)}{(x-q_{1}^{2})(y-q_{2}^{2})} + \frac{1}{\pi^{2}} \int_{s_{m}}^{\infty} dx \int_{s_{m}}^{\infty} dy \frac{\rho^{\text{pQCD}}(x,y)}{(x-q_{1}^{2})(y-q_{2}^{2})}$$

• pQCD piece alone: $F_{\pi^0\gamma^*\gamma^*}(-Q^2, -Q^2) = \frac{2F_{\pi}}{3Q^2} + \mathcal{O}(Q^{-4})$

dispersive part: $\frac{1}{\pi^2} \int_0^{s_m} dx \int_0^{s_m} dy \frac{\rho^{\text{disp}}(x,y)}{(x+Q^2)(y+Q^2)} = \mathcal{O}(Q^{-4})$

Asymptotics and pQCD constraints (2)

- dispersion-theoretical $\rho^{\text{disp}}(x,y)$ at low energies $x,y \leq s_m$
- doubly-asymptotic $\rho^{pQCD}(x, y)$ for $x, y > s_m$ \longrightarrow does not contribute to singly-virtual TFF

$$F_{\pi^{0}\gamma^{*}\gamma^{*}}(q_{1}^{2},q_{2}^{2}) = \frac{1}{\pi^{2}} \int_{0}^{s_{m}} dx \int_{0}^{s_{m}} dy \frac{\rho^{\text{disp}}(x,y)}{(x-q_{1}^{2})(y-q_{2}^{2})} + \frac{1}{\pi^{2}} \int_{s_{m}}^{\infty} dx \int_{s_{m}}^{\infty} dy \frac{\rho^{\text{pQCD}}(x,y)}{(x-q_{1}^{2})(y-q_{2}^{2})}$$

- pQCD piece alone: $F_{\pi^0\gamma^*\gamma^*}(-Q^2, -Q^2) = \frac{2F_{\pi}}{3Q^2} + \mathcal{O}(Q^{-4})$ dispersive part: $\frac{1}{\pi^2} \int_0^{s_m} dx \int_0^{s_m} dy \frac{\rho^{\text{disp}}(x, y)}{(x+Q^2)(y+Q^2)} = \mathcal{O}(Q^{-4})$
- anomaly and Brodsky–Lepage: $\rho^{\text{disp}}(x, y)$ fulfils two sum rules \longrightarrow add effective pole: $\rho^{\text{eff}} = \frac{g_{\text{eff}}}{4\pi^2 F_{\pi}} \pi^2 M_{\text{eff}}^4 \delta(x - M_{\text{eff}}^2) \delta(y - M_{\text{eff}}^2)$ find $g_{\text{eff}} \sim 10\%$ (small), $M_{\text{eff}} \sim 1.5 \dots 2.0 \text{ GeV}$ (reasonable)

Uncertainties in the π^0 pole contribution

Normalisation

• uncertainty on $\pi^0
ightarrow \gamma \pm 1.5\%$

Dispersive input

- different $\pi\pi$ phase shift inputs:
 - ▷ Bern vs. Madrid Colangelo et al. 2011, García-Martín et al. 2011
 - ▷ effective form factor phase (incl. ρ' , ρ'') Schneider et al. 2012
- cutoff in Khuri–Treiman integrals $1.8 \dots 2.5 \, \mathrm{GeV}$

Brodsky–Lepage limit uncertainty

• allow for $\frac{+20\%}{-10\%}$, 3σ band around data

BaBar 2009, Belle 2012

PrimEx 2020

Onset of pQCD asymptotics

• vary
$$s_m = 1.7(3) \text{GeV}^2$$

Results: singly-virtual

Results: singly-virtual

Hoferichter, Hoid, BK, Leupold, Schneider 2018

Comparison dispersive vs. LMD+V-lattice

• plot $(Q_1^2 + Q_2^2) F_{\pi^0 \gamma^* \gamma^*} (-Q_1^2, -Q_2^2)$:

Result: $(g-2)_{\mu}$ from π^0 pole

Final result for the π^0 pole contribution $[10^{-11}]$

63.0 \pm 0.9 chiral anomaly / $\pi^0 \rightarrow \gamma \gamma$

 \pm 1.1 dispersive input

- + 2.2 - 1.4 Brodsky–Lepage
- ± 0.6 onset of pQCD contribution s_m

= 63.0 + 2.7- 2.1 Hoferichter, Hoid, BK, Leupold, Schneider 2018

- model-independent, data-driven determination
 with all physical low- and high-energy constraints implemented
- perfectly consistent with
 - ▷ Padé approxim. $63.6(2.7) \times 10^{-11}$ Masjuan, Sánchez-Puertas 2017
 - \triangleright lattice $62.3(2.3) \times 10^{-11}$ Gérardin et al. 2019

"White Paper" summary HLbL

hadronic state	$a_{\mu}^{\mathrm{HLbL}} \left[10^{-11} \right]$	
pseudoscalar poles	$93.8^{+4.0}_{-3.6}$	η, η' : Masjuan, Sánchez-Puertas 2017
pion box	-15.9(2)	Colangelo et al. 2017
S-wave $\pi\pi$ rescatt.	-8(1)	Colangelo et al. 2017
kaon box	-0.5(1)	
scalars+tensors $\gtrsim 1 \mathrm{GeV}$	$V \sim -1(3)$	2
axial vectors	$\sim 6(6)$	hadrons
short distance	$\sim 15(10)$	
heavy quarks	$\sim 3(1)$	μ
total	92(19)	Aoyama et al. 2020
\longrightarrow further need for improvement to reach 10% accuracy for a_{μ}^{HLbL}		

 \rightarrow see talk by P. Sánchez-Puertas

Summary / Outlook

Dispersive analysis of π^0 transition form factor:

- based on high-precision data on $e^+e^- \rightarrow \pi^+\pi^-, \pi^+\pi^-\pi^0$
- matched onto all fundamental constraints:

anomalyBrodsky–Lepage limitpQCD limit• π^0 pole $(g-2)_{\mu}^{\pi^0} = 63.0^{+2.7}_{-2.1} \times 10^{-11}$ PrimEx-IIuncertainties: $\pi^0 \rightarrow \gamma\gamma$ PrimEx-IIdispersive uncertaintiesBES IIIBL limit (BaBar vs. Belle)Belle II

• further spinoff: $\pi^0 \rightarrow e^+e^-$ Hoferichter, Hoid, BK, Lüdtke 2021

In progress:

• similar program for η / η' Holz et al.; cf. also Gan, BK, Passemar, Tulin 2020

Main challenges for HLbL at 10% accuracy:

• axial vectors & short-distance constraints

various

Results π^0 **TFF:** doubly-virtual (diagonal)

in comparison to Gérardin, Meyer, Nyffeler 2016

Results π^0 **TFF:** doubly-virtual (diagonal)

in comparison to Gérardin, Meyer, Nyffeler 2016

$\pi^0 ightarrow \gamma^* \gamma^*$ transition form factor

$\pi^0 ightarrow \gamma^* \gamma^*$ transition form factor

$\pi^0 ightarrow \gamma^* \gamma^*$ transition form factor

Pion vector form factor vs. Omnès representation

 $\pi\pi$ P-wave phase shift / effective form factor phase incl. ρ' , ρ'' Schneider et al. 2012

Dispersive representation $\gamma^* ightarrow 3\pi$

- parameterisation of subtraction function $a(q^2)$
 - \longrightarrow to be fitted to $e^+e^- \rightarrow 3\pi$ cross section data:

$$a(q^2) = \frac{F_{3\pi}}{3} + \frac{q^2}{\pi} \int_{\text{thr}}^{\infty} ds' \frac{\text{Im}\,\mathcal{A}(s')}{s'(s'-q^2)} + C_n(q^2)$$

• $\mathcal{A}(q^2)$ includes resonance poles:

$$\mathcal{A}(q^2) = \sum_{V} \frac{c_V}{M_V^2 - q^2 - i\sqrt{q^2}\Gamma_V(q^2)} \qquad V = \omega, \phi, \omega', \omega''$$
$$c_V \text{ real}$$

• conformal polynomial (inelasticities); S-wave cusp eliminated:

$$C_n(q^2) = \sum_{i=1}^n c_i \left(z \left(q^2 \right)^i - z(0)^i \right), \qquad z \left(q^2 \right) = \frac{\sqrt{s_{\text{inel}} - s_1} - \sqrt{s_{\text{inel}} - q^2}}{\sqrt{s_{\text{inel}} - s_1} + \sqrt{s_{\text{inel}} - q^2}}$$

• exact implementation of $\gamma^* \rightarrow 3\pi$ anomaly:

$$\frac{F_{3\pi}}{3} = \frac{1}{\pi} \int_{s_{\text{thr}}}^{\infty} ds' \frac{\operatorname{Im} a(s')}{s'}$$

Fit results $e^+e^- ightarrow 3\pi$ cross section data

Parameters:

- resonance parameters M_{ω} , Γ_{ω} , M_{ϕ} , Γ_{ϕ} , c_{ω} , c_{ϕ} , $c_{\omega'}$, $c_{\omega''}$
- conformal parameters c_1 , c_2 , c_3
- energy rescaling $\sqrt{s} \rightarrow \sqrt{s} + \xi(\sqrt{s} 3M_{\pi})$

 \longrightarrow far less an issue than for $\pi^+\pi^-$

Fit results $e^+e^- ightarrow 3\pi$ cross section data

Parameters:

- resonance parameters M_{ω} , Γ_{ω} , M_{ϕ} , Γ_{ϕ} , c_{ω} , c_{ϕ} , $c_{\omega'}$, $c_{\omega''}$
- conformal parameters c_1 , c_2 , c_3
- energy rescaling $\sqrt{s} \rightarrow \sqrt{s} + \xi(\sqrt{s} 3M_{\pi})$

 \longrightarrow far less an issue than for $\pi^+\pi^-$

• quality of the combined fit to all data:

this work

 $\chi^2/{
m dof}$ 430.8/305 = 1.41

- \triangleright correlations increase $\chi^2/{
 m dof}$ by \sim 0.3
- significantly better fits to individual data sets

 \longrightarrow fit errors inflated by scale factor $S = \sqrt{\chi^2/dof}$

Fit results $e^+e^- ightarrow 3\pi$: ω,ϕ peaks

Fit to $\pi^0\gamma$ instead: HVP contribution

- fit disp. representation to $e^+e^- \rightarrow \pi^0 \gamma$ instead of 3π data
 - \longrightarrow excellent consistency, average pole parameters:

	$e^+e^- o 3\pi, \pi^0\gamma$	PDG
$\bar{M}_{\omega} \; [{\sf MeV}]$	782.736(24)	782.65(12)
$\bar{\Gamma}_{\omega} \; [{ m MeV}]$	8.63(5)	8.49(8)
$ar{M}_{\phi} \; [{\sf MeV}]$	1019.457(20)	1019.461(16)
$\bar{\Gamma}_{\phi} \; [MeV]$	4.22(5)	4.249(13)

• $\pi^0 \gamma$ HVP contribution:

Hoid, Hoferichter, BK 2020

$$a_{\mu}^{\pi^{0}\gamma}|_{\leq 1.35 \,\mathrm{GeV}} = 43.8(6)(1) \times 10^{-11} = 43.8(6) \times 10^{-11}$$

• good agreement (except small interpolation errors):

Davier et al. 2019	Keshavarzi et al. 2019
44.1(1.0)	45.8(1.0)

Summary: processes and unitarity relations for $\pi^0 o \gamma^* \gamma^*$

