

Recent results on hadron physics at KLOE/KLOE-2

Marcin.Berlowski@ncbj.gov.pl

NCBJ, Warsaw, Poland on behalf of the KLOE-2 Collaboration

Presentation plan

- DAFNE collider, data collected, KLOE detector and KLOE-2 upgrade
- KLOE-2 physics program
- Brief description of finished/ongoing analysis:
 - Limit on $\eta \rightarrow \pi^+ \pi^-$
 - B boson search in $\phi \rightarrow \pi^{\circ} \eta \gamma$
 - $-\chi PT$ "golden mode" $\phi \rightarrow (\eta \rightarrow \pi^{\circ} \gamma \gamma) \gamma$
 - $-\gamma\gamma \rightarrow \pi^{\circ} \text{ process}$

DAFNE \phi factory

- e^+e^- collider $@\sqrt{s} = M_{\phi}(1020 \text{ MeV})$
- **KLOE** data taking: 2001–2006
- Collected ~2.5 fb⁻¹ at ϕ peak
- Best peak/integrated luminosity:

 $L_{peak} = 1.4 \cdot 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ $\int L dt = 8.5 \text{ pb}^{-1} / \text{day}$

- KLOE-2: 2014-2018 $L_{peak} = 2.4 \cdot 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ $\int \text{Ldt} = 11 \text{ pb}^{-1}/\text{day}$
- **KLOE** + **KLOE-2** ~8fb⁻¹ \rightarrow 2.4 · 10¹⁰ ϕ which is by now the largest sample collected at ϕ peak in e⁺e⁻ collider

KLOE-2 data set:

KLOE detector

Drift chamber:

- Gas mixture: 90% He, 10% isobutane
- Resolutions: $\sigma_{xy} \sim 150 \mu m$, $\sigma_z \sim 2mm$,
- $\frac{\sigma p_t}{p_t} < 0.4\% \ (45^\circ < \theta < 135^\circ), \ \sigma_v \sim 3mm$

Electromagnetic calorimeter:

- Made of lead/scintillating fibers
- Covers 98% of solid angle

- Resolutions:
$$\frac{\sigma_E}{E} = \frac{5.7\%}{\sqrt{E(GeV)}}$$
,
 $\sigma_T = \frac{57 \ ps}{\sqrt{E(GeV)}} \oplus 140 \ ps$

• Magnetic field ~0.52 T

KLOE-2 upgrades

CCALT (LYSO-cristals) & **QCALT** (scintillator tiles and fibers with SiPM read-out): both inside KLOE detector, to improve low polar angles acceptance for γ 's & K_L decays

LET: LYSO with SiPM readout, ~1 m from the IP, γγ-physics

Marcin Berlowski MESON2021

5

IT: 4 layers of cylindrical GEM detectors, larger acceptance for low p_t tracks, to improve vertex resolution at the Interaction Point

HET: Scintillator + PMT 11 m from the IP, γγ-physics

- Hadronic cross section: ISR studies with 3π , 4π final states, F_{π} with increased statistics, measurement of a_{μ} HLO in the space-like region using Bhabha process
- Light meson Transition Form Factors
- Tests of χPT and other theories e.g. $\eta \rightarrow \pi^0 \gamma \gamma$
- C, P, CP violation in $\eta \rightarrow \gamma \gamma \gamma$, $\eta \rightarrow \pi^+ \pi^-$, $\eta \rightarrow \pi^0 \pi^0$, $\eta \rightarrow \pi^0 \pi^0 \gamma$
- CP violating $\eta \rightarrow \pi^+\pi^-e^+e^-$, other 4 charged tracks η decays
- $\gamma\gamma$ physics: $\Gamma(\gamma\gamma \rightarrow \pi^0)$ and π^0 Transition Form Factor
- Dark Forces searches: e⁺e⁻→Uγ→ππγ,μµγ, Higgsstrahlung process in e⁺e⁻→Uh'→µµ+missing energy, leptophobic B boson: φ→ηB, B→π⁰γ, η→γγ and η→Bγ, B→π⁰γ, η→π⁰γγ, U invisible decays, axion-like particles
- Plus Kaon Physics program e.g.: semileptonic K_S , $K_S \rightarrow \gamma\gamma$ (BR, χPT), $K_S \rightarrow 3\pi^{\circ}$ (BR, CP violation), ...

[EPJC 68 (2010) 619] [EPJ WoC 166 (2018)]

BR limit for $\eta \rightarrow \pi^+ \pi^-$

- P, CP-violating process
- In the SM the BR prediction [*Phys.ScriptaT* 99, 23 (2002)]:
 - proceed only via CPV in weak interaction $\rightarrow 10^{-27}$
 - introducing a CPV term in QCD $\rightarrow 10^{-17}$
 - allowing CPV in the extended Higgs sector $\rightarrow 10^{-15}$
- An observation of larger branching ratio would mean new source of CP violation in the strong interactions
- Previous KLOE result [*Phys.Lett.B* 606 (2005) 276] based on 0.4 fb⁻¹: $< 1.3 \cdot 10^{-5}$ @90% CL
- LHCb: < 1.6·10⁻⁵ @90% CL [*Phys.Lett.B* 764 (2017) 233-240]

- New analysis using independent 1.6 fb⁻¹ of KLOE data
- No event excess in the η region, limit extracted using CL_s technique

$BR(\eta \rightarrow \pi^+\pi^-) < 4.9 \cdot 10^{-6} @ 90\% CL$

Combined with previous KLOE result: < 4.4 · 10⁻⁶ @ 90% CL
Published in JHEP10 (2020) 047

- Search for a new physics possible analog of the U boson, but B boson (leptophobic DM mediator) couples mostly to quarks, in the most basic model to baryon number via kinetic mixing term ε
- U boson searches don't exclude the existence of the B boson above $m_{\pi^{\circ}}$ and this can still have an impact on the g-2 anomaly (a_{μ}^{NLO})
- We can look for a B signature in the M($\pi^{\circ}\gamma$) produced in either $\phi \rightarrow B\eta$ or $\eta \rightarrow B\gamma$

$$\mathcal{L} = -\frac{1}{2} \varepsilon F^{\mu\nu} F'_{\mu\nu} = -\frac{g_B}{3} \bar{q} \gamma^{\mu} q B_{\mu}$$
$$\alpha_B = \frac{g_B^2}{4\pi}$$

S. Tulin Phys. Rev. D 89, 114008 (2014), arXiv:1404.4370

- Study on 1.7 fb⁻¹ of KLOE data
- 5 prompt photons in the final state: 104 $-\phi \rightarrow \eta B \rightarrow \eta (\gamma \gamma) \pi^{\circ} (\gamma \gamma) \gamma \rightarrow 5 \gamma$
- Main background coming from: $\phi \rightarrow (a_0 \rightarrow \eta \pi^\circ) \gamma$ and $\phi \rightarrow (\eta \rightarrow 3\pi^\circ) \gamma$ with lost or merged photons
- Kinematic fit to improve resolution 10

 $M(2\gamma)$ after kinematic fit correction

BR of $\eta \rightarrow \pi^{\circ} \gamma \gamma$

- AGS/Crystal Ball (K⁻ $p \rightarrow \Lambda \eta$) [2] (~1200 ev):

BR($\eta \rightarrow \pi^{\circ} \gamma \gamma$)=(2.21 ± 0.24_{stat} ± 0.38_{syst}) · 10⁻⁴

- KLOE $(\phi \rightarrow \eta \gamma)$ [3] (63±28 ev), preliminary, based on L_{int}=450 pb⁻¹:

 $(0.84 \pm 0.27_{\text{stat}} \pm 0.14_{\text{syst}}) \cdot 10^{-4}$

E. Oset et al, Phys. Rev. D 67, 073013 (2003),
S. Prakhov et al., Phys. Rev. C 78 (2008) 015206
B. Di Micco et al., Acta Phys. Slov. 56, 403 (2006),

[Ll. Ametller et al. PLB 276(1) (1984)]

- χPT "golden mode": O(p²) null, O(p⁴)=0 on the tree level and suppressed on 1loop by G-parity and large kaon mass ⇒ O(p⁶) are dominating
- $M(\gamma\gamma)$ that are not coming from π° can be used as a test of theoretical models

 $\phi \rightarrow \eta \gamma$ with $\eta \rightarrow \pi^{\circ} \gamma \gamma$

- A new analysis of old KLOE data, using $\sim 4x$ larger data sample (~ 1.7 fb⁻¹)
- Similar to 5 prompt analysis of B boson
- Variables corrected by a kinematic fit to improve resolution
- Kinematic fit with $\eta(\gamma\gamma)\pi^{\circ}(\gamma\gamma)$ mass constrains to reject $\phi \rightarrow (a_0 \rightarrow \eta\pi^{\circ})\gamma$
- Two π° events removed to suppress $\phi \rightarrow (f_0 \rightarrow \pi^{\circ} \pi^{\circ})\gamma$ and $e^+e^- \rightarrow (\omega \rightarrow \pi^{\circ} \gamma)\pi^{\circ}$
- TMVA-BDT based rejection for $\eta \rightarrow 3\pi^{\circ}$ cases with merged clusters using shape of the clusters as an input

 $\phi \rightarrow \eta \gamma$ with $\eta \rightarrow \pi^{\circ} \gamma \gamma$

- Normalization to $\eta \rightarrow 3\pi^0$ sample in order to reduce systematic effects
- Clear signal evidence on data distribution with S/B ratio ~0.1 in the signal region, achieved with $\varepsilon_s \sim 20\%$
- Number of signal events ~1700
- Statistical uncertainty reduced by a factor three with respect to the old preliminary KLOE result
- Consistency check of different fitting strategies and systematic uncertainty evaluation ongoing
- Extraction of $M(\gamma\gamma)$ in progress

γγ physics with High Energy Tagger

- Precise measurement of $\Gamma(\pi^{\circ} \rightarrow \gamma \gamma)$
- Transition FF $F_{\pi\gamma^*\gamma}(q^2,0)$ in the space-like region ($|q^2| < 0.1 \text{ GeV}^2$)
- Impact on value and precision of $a_{\mu}^{LbL;\pi^{\circ}}$

Concept – see [Eur. Phys. J. C 72 (2012) 1917]

- Scintillator hodoscope + PMTs, inserted 11 m from IP
- High Energy Tagger (HET) acquisition synchronized with DAFNE and KLOE trigger
- Coincidence between HET and KLOE EMC (A+ sample)
- Evaluation of the uncorrelated HET-KLOE time coincidences (A sample)
- Number of π° tagged events from $\gamma\gamma$ fusion extracted from A+/A comparison

Status of $\gamma\gamma \rightarrow \pi^{\circ}$ search

 $\Delta T_{\gamma\gamma} - \Delta R_{\gamma\gamma}/c < 0.3$ ns

Example of $\cos\theta_{\gamma\gamma}$ fits in coincidence (A+) and accidental (A) samples with signal enriching cut

- 3fb⁻¹ of data with optimized calibration constants to improve time and energy resolutions
- Simultaneous fits of A + / Asamples in $M_{\gamma\gamma}$, $\cos\theta_{\gamma\gamma}$, $\Delta T_{\gamma\gamma}$ - $\Delta R_{\gamma\gamma}/c$
 - Fit to accidental-pure samples ٠ (A) used to constrain the number of accidentals in A+
 - 8% statistical precision on signal reached from a 1.5fb⁻¹ part of data sample 17

Marcin Berlowski MESON2021

Conclusions

- KLOE data sample is still allowing us to perform several high precision measurements such as:
 - New BR limit for $\eta \rightarrow \pi^+ \pi^-$
 - Second look at input to χPT from $\eta \rightarrow \pi^{\circ} \gamma \gamma$ channel
 - Searches for a new physics in leptophobic sector (dark B mediator)
- In KLOE-2 the increased event sample and the new detectors providing better acceptance and resolution, are going to improve several results as well as provide a new ones like $\gamma\gamma \rightarrow \pi^{\circ}$

Conclusions

- KLOE data sample is still allowing us to perform several high precision measurements such as:
 - New BR limit for $\eta \rightarrow \pi^+ \pi^-$
 - Second look at input to χPT from $\eta \rightarrow \pi^{\circ} \gamma \gamma$ channel
 - Searches for a new physics in leptophobic sector (dark B mediator)
- In KLOE-2 the increased event sample and the new detectors providing better acceptance and resolution, are going to improve several results as well as provide a new ones like $\gamma\gamma \rightarrow \pi^{\circ}$

THANK YOU for your attention!!!

SPARES

- KLOE-2 is not only about **increased statistics**:
 - QCALT+CCALT: will increase acceptance for photons from the interaction point (from 21° to 10°)
 - Inner Tracker: will improve resolution of tracking and will help to achieve a better vertex reconstruction
 - **HET**: allows $\gamma^* \gamma^* \rightarrow \pi^\circ$ search
- With $\sim 2.4 \cdot 10^8 \phi$ mesons and $N_n \sim 3 \cdot 10^8$ in KLOE/KLOE-2 we expect:
 - ~5000 events of $\eta \rightarrow \pi^{\circ} \gamma \gamma$ (was ~70)
 - Better background reduction from $\eta \rightarrow 3\pi^{\circ}$ thanks to increased detector's acceptance for photons coming at small angles
 - Improvement of a factor of ~3.5 in $\pi^{\circ}\gamma$ invariant mass sensitivity for the upper limit calculation
- The expected upper limit for $\eta \rightarrow \pi^+\pi^-$ with the full KLOE/KLOE-2 statistics is 2.7 · 10⁻⁶@ 90% CL

Low angle radiative Bhabha cross section

- HET counting rates dominated by low-angle radiative Bhabha's scattering
- BHA useful to check HET detector operational stability and validate acceptance and efficiency of the detector by comparison with the MC simulations
- Only plastics from 11 to 28 are used for π° search

