

Experimental review of results on charmonium-like states

Frank Nerling HFHF, GSI Darmstadt

MESON2021, May 17th - 20th 2021

Outline

- Introduction
- The role of e⁺e⁻ annihilation
- A selection of famous and recent results
 - Supernumerary vector Y states
 - Manifestly exotic Z_c states
 - The X(3872) and other X states
- Summary

GSI

GSI

Charmonium spectrum (cc̄)

Potential model:

$$\begin{split} V_0^{c\bar{c}} &= -\frac{4}{3}\frac{\alpha_s}{r} + br + \frac{32\pi\alpha_s}{9m_c^2}\delta(r)\vec{S}_c\vec{S}_{\bar{c}}\\ V_{\text{spin-dep.}} &= \frac{1}{m_c^2}\left[\left(\frac{2\alpha_s}{r^3} - \frac{b}{2r}\right)\vec{L}\cdot\vec{S} + \frac{4\alpha_s}{r^3}T\right]\\ &+ \text{ relativistic corrections!} \end{split}$$

[Godfrey & Isgur, PRD 32 (1985) 189] [Barnes, Godfrey & Swanson, PRD 72 (2005) 054026]

Charmonium spectrum (cc̄)

• Before 2003:

Good agreement between theory and experiment, particularly beneath open charm thresholds

$$\begin{split} V_0^{c\overline{c}} &= -\frac{4}{3}\frac{\alpha_s}{r} + br + \frac{32\pi\alpha_s}{9m_c^2}\delta(r)\vec{S}_c\vec{S}_{\overline{c}}\\ V_{\text{spin-dep.}} &= \frac{1}{m_c^2}\left[\left(\frac{2\alpha_s}{r^3} - \frac{b}{2r}\right)\vec{L}\cdot\vec{S} + \frac{4\alpha_s}{r^3}T\right]\\ &+ \text{ relativistic corrections!} \end{split}$$

[Godfrey & Isgur, PRD 32 (1985) 189] [Barnes, Godfrey & Swanson, PRD 72 (2005) 054026]

Frank Nerling

Charmonium spectrum (cc)

• Before 2003:

- Good agreement between theory and experiment, particularly beneath open charm thresholds
- After 2003:
 - Severe mismatch between predicted and observed spectrum

Potential model:

$$\begin{split} V_0^{c\overline{c}} &= -\frac{4}{3}\frac{\alpha_s}{r} + br + \frac{32\pi\alpha_s}{9m_c^2}\delta(r)\vec{S}_c\vec{S}_{\overline{c}}\\ V_{\text{spin-dep.}} &= \frac{1}{m_c^2}\left[\left(\frac{2\alpha_s}{r^3} - \frac{b}{2r}\right)\vec{L}\cdot\vec{S} + \frac{4\alpha_s}{r^3}T\right] \\ &+ \text{ relativistic corrections!} \end{split}$$

[Godfrey & Isgur, PRD 32 (1985) 189] [Barnes, Godfrey & Swanson, PRD 72 (2005) 054026]

Charmonium spectrum (cc)

Charmonium spectrum (cc)

Charmonium spectrum (cc̄)

Mesons and exotic states

Simple Quark model

• Mesons: Color neutral $q\overline{q}$ systems

Conventional (qq)

QCD

Meson states beyond qq

Major e⁺e⁻ collider experiments

The role of e⁺e⁻ annihilation

- > CLEO(-c), BaBar, Belle(II) ($E_{cms} \le 12 \text{ GeV}$)
- ▶ BESI-III ($E_{cms} \le 4.9 \text{ GeV}$)
- Double charmonium production
 - → CLEO, BaBar, Belle(II) ($E_{cms} \le 12 \text{ GeV}$)

• B meson decays

CLEO, BaBar, Belle(II) (E_{cms} ≤ 12 GeV) (also LHCb: pp (7 TeV/c)

- Two photon production
 - ▶ BaBar, CLEO(-c), Belle(II) ($E_{cms} \le 12 \text{ GeV}$)
 - > BESI-III (E_{cms} ≤ 4.9 GeV)

The role of e⁺e⁻ annihilation

- > CLEO(-c), BaBar, Belle(II) ($E_{cms} \le 12 \text{ GeV}$)
- ▶ BESI-III ($E_{cms} \le 4.9 \text{ GeV}$)
- Double charmonium production
 ➤ CLEO, BaBar, Belle(II) (E_{cms} ≤ 12 GeV)

 \rightarrow not covered in this talk

• B meson decays

CLEO, BaBar, Belle(II) (E_{cms} ≤ 12 GeV) (also LHCb: pp (7 TeV/c)

Two photon production
 > BaBar, CLEO(-c), Belle(II) (E_{cms} ≤ 12 GeV)
 > BESI-III (E_{cms} ≤ 4.9 GeV)

\rightarrow not covered in this talk

The Y(4260) and further supernumerary vector states

The Y states, e⁺e⁻ production of $I \equiv I$ J/ψππ, h_cππ and ψ(2S)ππ

Some history:

- Discovery of the Y(4260) using ISR by BaBar in $J/\psi\pi^+\pi^-$
- Discovery of the Y(4360) using ISR by BaBar in $\psi(2s)\pi^+\pi^-$

BESIII result, published

- Cross-section inconsistent with the single resonance Y(4260)!
 - > Two favoured over one by >7 σ

- BESIII: Much higher precision (5.8σ)
- Coherent BW fit: Y(4220) and Y(4390)

What happened to the Y states? $\mathbf{G} = \mathbf{F} \mathbf{I}$

Two structures now resolved: $Y(4260) \rightarrow Y(4220)$, $Y(4360) \rightarrow Y(4390)$

HFHF

=> First Y decays to open-charm => Consistency with structures in $J/\psi / h_c / \psi(2S) \pi \pi$

4.1

4.2

43

E_{CM}(GeV)

4.4

HFHF

4.5

4.6

- BESIII

- Belle

- BaBar

4.5

√s(GeV)

4.6

Further decays of Y(4260)

 $e^+e^- \rightarrow J/\psi \eta$

- Simultaneous maximum-likelihood fit (*Top: High stat. XYZ data, Bottom: Scan data*)
- $\psi(4040)$ assumed, Y(4220), Y(4390) ?
- Significance of Y(4390) = 6.0 σ

Parameters	Solution 1	Solution 2	Solution 3
$M_1({\rm MeV}/c^2)$		4039(fixed)	
$\Gamma_1(MeV)$		80(fixed)	
$\Gamma_1^{e^+e^-}\mathcal{B}r_1$ (eV)	1.5 ± 0.3	1.4 ± 0.3	7.0 ± 0.6
ϕ_1 (rad)	3.3 ± 0.3	3.1 ± 0.3	4.5 ± 0.2
$M_2({\rm MeV}/c^2)$	(4218.6 ± 3.8	
$\Gamma_2(MeV)$		82.0 ± 5.7	
$\Gamma_2^{e^+e^-}\mathcal{B}r_2$ (eV)	8.0 ± 1.7	4.8 ± 1.0	7.0 ± 1.5
ϕ_2^2 (rad)	4.2 ± 0.4	36 ± 03	2.9 ± 0.3
$M_3({\rm MeV}/c^2)$	(4382.0 ± 13.3	
$\Gamma_3(MeV)$		135.8 ± 60.8	
$\Gamma_3^{e^+e^-}\mathcal{B}r_3$ (eV)	3.4 ± 2.2	1.5 ± 1.0	1.7 ± 1.1
ϕ_3 (rad)	2.8 ± 0.4	3.3 ± 0.4	3.0 ± 0.4

Further decays of Y(4260)

 $e^+e^- \rightarrow J/\psi \eta$

- Simultaneous maximum-likelihood fit (*Top: High stat. XYZ data, Bottom: Scan data*)
- $\psi(4040)$ assumed, Y(4220), Y(4390) ?
- Significance of Y(4390) = 6.0 σ
- Y(4220) & Y(4390) mass and width compilation vs. Y(4360) from PDG:

- Simultaneous maximum-likelihood fit (to the two η' decay modes)
- Fit to cross section σ [(m, Γ) fixed to PDG]
 - Single $\psi(4160)$ or Y(4260)
 - > Coherent sum of $\psi(4160)$ and Y(4260)
- Coherent sum preferred by data
 - > 4.0 σ and 6.3 σ , respectively
 - > Xsec σ an order of magnitude smaller than the one for J/ ψ η
- Higher statistics needed ...

Further decays of Y(4260)

Frank Nerling

Charmonium-like states - Experimental overview

Decays of Y(4260) to light hadrons 🛛 🖬 🖬 🖿

- More and more possible decay channels to light hadrons investigated
- Still no clear evidence ...

HFHF

The Y(4260) in B decays

- Search for the Y(4260) in B^{+/0} decays
- BaBar reported 3.1 σ for B⁺ [PRD 73, 011101 (2006)]
- No significant evidence $(2.1\sigma/0.9\sigma)$, for B⁰ first result
- Upper limits (CL90) on branching fractions

$$\mathcal{B}(B^+ \to Y(4260)(\to J/\psi\pi^+\pi^-)K^+) < 1.4 \times 10^{-5}$$

$$\mathcal{B}(B^0 \to Y(4260)(\to J/\psi\pi^+\pi^-)K^0_S) < 1.7 \times 10^{-5}$$

The Y states, e⁺e⁻ production of $\Box = \Box I$ J/ψππ, h_cππ and ψ(2S)ππ

 $e^+e^- \rightarrow \psi(2S)\pi^+\pi^$ $e^+e^- \rightarrow \psi(2S)\pi^+\pi^-$ [PRL 99, 142002 (2007)] [Phys. Rev. D 96, 032004 (2017)] 120 Cross Section (pb) BESIII Belle 100 Entries/25 MeV/c² - Belle - BaBar 80 60 40 20 0 -20 🛶 4.ſ 4.5 4.2 4.3 4.5 4.6 4.4 5.5 4.1 $M(\pi^{+}\pi^{-}\psi(2S))$ (GeV/c²) √s(GeV)

- Confirmation of the Y(4360) in $\psi(2S)\pi^{-}\pi^{+}$ with a significance of 8σ
- First observation of Y(4660) with 5.8σ

- BESIII: Much higher precision (5.8σ)
- Coherent BW fit: Y(4220) and Y(4390)

The Y states, e⁺e⁻ production of I = I = IJ/ψππ, h_cππ and ψ(2S)ππ

 $e^+e^- \rightarrow \psi(2S)\pi^+\pi^$ $e^+e^- \rightarrow \psi(2S)\pi^+\pi^-$ [PRL 99, 142002 (2007)] [Phys. Rev. D 98, 111103 (2012)] 70 $\sigma(\psi(2S)\pi^{+}\pi^{-})$ (pb) Belle Entries/25 MeV/c² 60 Babar 50 40 30 20 10 0 4.2 5.8 4.4 4.6 4.8 5.2 5.4 5.6 5 4.5 5. E_{cm} (GeV) $M(\pi^+\pi^-\psi(2S))$ (GeV/c²)

- Confirmation of the Y(4360) in $\psi(2S)\pi^-\pi^+$ with a significance of 8σ
- First observation of Y(4660) with 5.8σ
- BaBar confirms later the Y(4660)
- Further decay channels by Belle

The Y states, e⁺e⁻ production of GSI J/ψππ, h_cππ and ψ(2S)ππ

 $e^+e^- \rightarrow \psi(2S)\pi^+\pi^$ $e^+e^- \rightarrow \psi(2S)\pi^+\pi^-$ [PRL 99, 142002 (2007)] [Phys. Rev. D 98, 111103 (2012)] 70 ∟ $\sigma(\psi(2S)\pi^+\pi^-)$ (pb) Belle 60 Babar 50 40 30 20 10 0 4.2 5.2 5.8 4.4 4.6 4.8 5 5.4 5.6 4.5 5 5 E_{cm} (GeV) Width (MeV) Experiment $92^{+40}_{-24}{}^{+10}_{-21}$ $4634_{-7}^{+8}_{-8}^{+5}$ Belle, $\Lambda_c^+ \Lambda_c^-$ BaBar confirms later the Y(4660) Belle, $\pi^+\pi^-\psi(2S)$ $4652 \pm 10 \pm 8$ $68 \pm 11 \pm 1$ Further decay channels by Belle BaBar, $\pi^+\pi^-\psi(2S)$ $4669 \pm 21 \pm 3$ $104 \pm 48 \pm 10$ $4626^{+7}_{-7} \pm 1$ $49.8^{+14}_{-12} \pm 4$ Belle, $D_{s}^{+}D_{s1}(2536)^{-}$ $4620^{+9}_{-8} \pm 3$ $47.0^{+32}_{-15} \pm 5$ Belle, $D_{s}^{+}D_{s2}^{*}(2573)^{-}$

The Z(4430) and further (charged) Zc states

HFHF Hendez Forschungsakademie Hessen für FAR **Experimental review of the Z(4430)**

- First observed by Belle in 2008
 - $\succ B \to K^{\mp} Z(4430)^{\pm} \to K^{\mp} \pi^{\pm} \psi'$
 - \blacktriangleright relatively narrow state, 6.5 σ
 - first charmonium-like state with a non-zero electric charge

=> Minimal quark content [ccud] = manifestly exotic

- BaBar searched for it, however, does not confirm [PRD 79, 112001 (2009)]
- LHCb confirms and showed resonant behavior in argand plot [PRL 112, 222002 (2014)]
- Decay to J/ψ/π seen in B decays by Belle [PRD 90, 112009 (2014)], and not seen by BaBar [PRD 79, 112001 (2009)]
- Spin-parity constrained by Belle: J^P = 1^{+,} confirmed by LHCb [PRL 112, 222002 & PRD 92, 112009 (2015)]

HFHF Two Z_c triplets established at BESII $\Box =$

• Two isospin triplets of charmonium-like exotic states established

HFHF Two Z_c triplets established at BESIII \Box

- Two isospin triplets of charmonium-like exotic states established
- Different decay modes (hidden vs. open charm) of same state observed?

HFHF Two Z candidates $Z_c(4050)$ & $Z_c(4250)$

- Two resonant structures in $\chi_{c1}\pi^+$ first observed by Belle in B decays, 2008
 - > Dalitz plots analysis, each > 5σ
 - $\succ M_1 = (4051 \pm 14^{+20}_{-41}) \text{MeV}/c^2, \Gamma_1 = (82^{+21}_{-17}) \text{MeV}$
 - $\blacktriangleright \quad M_2 = (4248 \pm 14^{+44}_{-29} {}^{+180}_{-35}) \mathrm{MeV}/c^2, \Gamma_2 = (177^{+54}_{-39} {}^{+316}_{-61}) \mathrm{MeV}$
- Similar to Z(4430) these are manifestly exotic charmonium-like candidates
 - > With a non-zero electric charge
 - Thus, minimal quark content => [ccud]
- BaBar does not confirm [PRD 85, 052003 (2012)] (accounting for $K\pi$ resonant structures => 1-2 σ)
- BESIII does not see the $Z_c(4050) \rightarrow \psi(3770)\pi^{+/-}$ [PRD 100, 032005 (2019)]
- => No confirmation yet, quantum numbers? Neutral partners decaying to in $\chi_{c1}\pi^0$?

- New charged state decaying to $J/\psi \pi^+$ first observed by Belle in 2014 (711 fb⁻¹)
 - $\succ \bar{B^0} \rightarrow K^- J/\psi \pi^+$
 - > Full amplitude analysis, 6.2σ significance

$$\succ M = (4196^{+31}_{-29}{}^{+17}_{-13}) \text{MeV}/c^2, \Gamma = (370^{+70}_{-70}{}^{+70}_{-132}) \text{MeV}$$

- J^P = 1⁺ preferred over other hyptheses
- Evidence for $Z_c(4430) \to J/\psi \pi^+$ found
- Needs confirmation

=> Further independent confirmation? Neutral partners decaying to $J/\psi\pi^0$?

HFHF First Z_{cs} candidates Z(3985) reported **G**

- Search for strange partner of $Z_c(3900)$
 - ➤ Containing s quark in open charm decay > $e^+e^- \rightarrow K^+(D_sD^*/D_s^*D)^-$
 - > Narrow threshold enhancement (5.3 σ)

$$M = (3982.5^{+1.8}_{-2.6} \pm 2.1) \text{MeV}/c^2,$$

$$\Gamma = (12.8^{+5.3}_{-4.4} \pm 3.0) \text{MeV}$$

- Manifestly exotic charged hidden-charm tetraquark candidate with strangeness
 - With a non-zero electric charge
 - > Thus, minimal quark content => $[c\overline{csu}]$
- LHCb reports a $Z_{cs}(4000)$ in B $\rightarrow \phi(J/\psi K^+)$ $\geq M = (4000.3 \pm 6^{+4}_{-14}) \text{MeV}/c^2,$ $\Gamma = (131 \pm 15 \pm 26) \text{MeV}$
 - ▶ J^P = 1⁺, hidden charm final state
 - > 10x broader ...
- => Same state observed in different decays (open/hidden charm) at two experiments?

HFHF **First Z_{cs} candidates Z(3985) reported** GS

 $\phi(J/\psi K^+)$

The X(3872) and further X states

Experimental review of the X(3872)

Analogy to deuteron:

- First observed by Belle in 2003
 - $\succ X(3872) \rightarrow J/\psi \pi^+ \pi^-$
 - very narrow state with J^{PC} = 1⁺⁺
- Belle & BaBar report signal in > $X(3872) \rightarrow D^0 \bar{D}^{*0}$
- Mass $m[X(3872)] m[D^{*0}] m[D^0]$ = (-0.07 ± 0.12) MeV/c² (LHCb 2020)
- Width measurement:
 - ≻ Γ_{X(3872)} < 1.2 MeV (2011, Belle)</p>
 - ➤ Γ_{X(3872)} = 1.13 MeV (2020, LHCb)

For clarification: => Precision measurement with sub-MeV resolution needed!

HFHF First observation of $e^+e^- \rightarrow \gamma X(3872)$

BESIII: First observation of $e^+e^- \rightarrow \gamma X(3872) \rightarrow \gamma \pi^+\pi^- J/\psi$ First observation of $e^+e^- \rightarrow \gamma X(3872) \rightarrow \gamma \omega J/\psi$

- $m = (3871.9 \pm 0.7 \pm 0.2) \,\mathrm{MeV}/c^2$
- $\Gamma < 2.4 \,\mathrm{MeV}$ (90% CL)

• Fit with three Breit-Wigner resonances => Evidence for two more structures

EXAMPLE First observation of $e^+e^- \rightarrow \gamma X(3872)$ **First**

- $m = (4200.6^{+7.9}_{-13.3} \pm 3.0) \text{ MeV}/c^2$
- $\Gamma = (115^{+38}_{-26} \pm 12) \text{ MeV}/c^2$

 Shape consistent with production via a Y(4260) state

[Subm. to Phys. Rev. Lett., arXiv:1903.04695 [hep-ex]]

Belle: First observation of $B \to KX(3872)$, with $X(3872) \to J/\psi\gamma$ And no evidence for $B \to KX(3872)$, with $X(3872) \to \psi(2S)\gamma$

- BaBar reported evidence for both, $J/\psi\gamma$ and $\psi(2S)\gamma$ with significances of 3.6 σ and 3.5 σ , respectively
- Belle observes the J/ψγ decay (>5σ) but no evidence for ψ(2S)γ
- Non-observation contradicts BaBar's constraint against pure D*D molecular interpretation [PRL 102, 132001 (2009)]

HFHF Herrickz Forschungsakademie Hessen für FAIR Rad. & open charm decays of X(3872)

- BESIII: Radiative decays of X(3872)
 - > Evidence for X(3872) $\rightarrow \gamma J/\psi$ (3.5 σ),
 - > No obvious signal for decay to $\gamma \psi$ '

Molecule vs. Tetraquark?

$\frac{B[X(3872) \rightarrow \gamma \psi(2S)]}{B[X(3872) \rightarrow \gamma J/\psi]}$	< 0.59 (BESIII) @ 90% C.L. < 2.1 (Belle) @ 90% C.L.
PRL 107, 091803 (Belle) PRL 102, 132001 (BaBar) NPB 886(665) (LHCb)	= 3.4±1.4 (BaBar) = 2.46±0.64±0.29 (LHCb)

=> Essential input to future tests of the molecular interpretation of X(3872)?

Rad. & open charm decays of X(3872)

[Phys. Rev. Lett., 124 (2020) 242001]

- BESIII: Radiative decays of X(3872)
 - \blacktriangleright Evidence for X(3872) $\rightarrow \gamma J/\psi$ (3.5 σ),
 - > No obvious signal for decay to $\gamma \psi$

- BESIII: $X(3872) \rightarrow D^{*0}\overline{D}^0 + c.c. (7.4\sigma)$
 - > No obvious signal for decay to γD^+D^-
 - > Open charm decay dominant

X(3915) in B decays

- The X(3915) has been observed by Belle in B decays, $X(3915) \rightarrow \omega J/\psi$ (*NB: initially named Y(3940)*)
- Confirmation in B decays by BaBar [PRD 82, 011101 (2010)]
- Also observed in $\gamma\gamma \rightarrow \omega J/\psi$ by Belle [PRL 104, 092001 (2010)] and BaBar [PRD 86, 072002 (2012)]

HFHF Hendels Forschurgsakademie Hessen für FAR First observation of $X(3872) \rightarrow \chi_{c1}\pi^0$

• No significant signals were found by Belle in search for X(3872) and X(3915) to $\chi_{c0} \pi^0$ (0.3 σ / 2.3 σ)

▷ $\mathcal{B}(X(3872) \to \chi_{c1}\pi^0)/\mathcal{B}(X(3872) \to J/\psi\pi^+\pi^-) < 0.97$ (90% C.L.)

- BESIII observes now X(3872) decay to $\chi_{c0} \pi^0$ (> 5 σ)
 - > $\mathcal{B}(X(3872) \to \chi_{c1}\pi^0)/\mathcal{B}(X(3872) \to J/\psi\pi^+\pi^-) = 0.88^{+0.33}_{-0.27} \pm 0.10.$

Isospin violation, comparable decay rate to $J/\psi\rho$ => Disfavours $\chi_{c1}(2P)$

Summary and Prospectives

- New era of charmonium-like states started two decades ago, and more than 20 unexpected XYZ states have been discovered
 - Supernumerary vector Y states consistently resolved (statistics)
 - Y(4260) and Y(3360) → Y(4220), Y(4390)?
 - First decays to open charm, further new decay modes to cc and/or light hadrons investigated
 - More candidates reported, especially Y(4660) to be studied (confirmed)
 - \succ Charged Z_c states are manifestly exotic states
 - First complete isospin triplets established
 - First strange partner(s) reported
 - More candidates reported, further to be studied (confirmed)
 - The first of these states discovered, the X(3872) still not understood
 - Consistent picture in B decays and e⁺e⁻ production
 - Line shape to be measured precisely
 - More candidates reported, further to be studied (confirmed)
- Different states observed in B decays vs. e⁺e⁻ annihilation

- The B factories CLEO(-c) and BarBar have run for one / two decades
- Belle has run a decade, meanwhile upgraded to Bellell
 - Comissioned, first physics run last year
 - Looking forward to new results
- BESIII successfully operating since 2008
 - World largest data sets in tau-charm mass region, unique XYZ data
 - > Machine upgrade allows to extend studies up to $E_{cms} = 5 \text{ GeV}$
- Upcoming and future experiments
 - > PANDA/FAIR as complementary and unique $p\overline{p}$ experiment
 - Super tau-charm factory in China and/or Russia

Outlook

Completion of the exotic multiplets

→ High statistics and precision, in combination with different probes