

Precise tests of the hadron-hadron strong interaction via femtoscopy with ALICE

Otón Vázquez Doce on behalf of the ALICE Collaboration

16th International Workshop on Meson Physics, 17th - 20th May 2021

Unveiling the strong interaction among hadrons at the LHC

ALICE Coll. Nature 588, 232 (2020)

High-energy physics Proton collisions probe nuclear force for exotic particles

Outline

LHC

Small collision systems: - pp $\sqrt{s} = 7$, 13 TeV

- p-Pb $\sqrt{s_{NN}}$ = 5.02 TeV
 - ⇒ size of particle source ~1 fm

Outline

LHC

ALICE

Central barrel tracking and PID:

- Reconstruction of charged particles: p, π , K.
- Hyperon reconstruction through weak decays $\Lambda \rightarrow p\pi, \ \Xi \rightarrow \Lambda \pi, \ \Omega \rightarrow \Lambda K$

Correlation studies at small relative momentum

Outline

LHC

ALICE

Study of hadron strong interactions

Femtoscopy: Precise data in the low momentum range, hardly accessible with other approaches

- Test of first principle calculations for unstable hadrons
- Search for new bound states
- Equation of State of neutron stars

Hadron-hadron strong interactions

Residual strong interaction among hadrons

 $\mathcal{L}_{EFT}[\pi, N, \ldots; m_{\pi}, m_N, \ldots, C_i]$

Non-perturbative region of QCD

- Hadrons as degrees of freedom
- Effective theories (EFT) with low-energy coefficients constraint by data

Lattice QCD

- Understanding of the interaction starting from **quark and gluons**

Hadron-hadron strong interactions

KISO event: <u>K. Nakazawa et al., Prog. Theor. Exp. Phys. 2015, 033D02</u> IBUKI event <u>J-PARC E07 Coll., Phys. Rev. Lett. 126, 062501 (2021)</u>

Otón Vázquez Doce

Hadron-hadron strong interactions S = -1S = -2 S = -3S = -4S = 0S = -5S = -6NN $\Lambda\Lambda, \Lambda\Sigma, \Sigma\Sigma, N\Xi \qquad \Lambda\Xi, \Sigma\Xi, N\Omega$ ΝΛ, ΝΣ ΞΞ, $\Lambda \Omega$, $\Sigma \Omega$ ΞΩ $\Omega\Omega$ Better S/N of LQCD Femtoscopy Experimental data $NN \rightarrow NN$ **Kaonic atoms E** hypernuclei $\Lambda p \rightarrow \Lambda p$ x10² [eV] 1.5 1.0 1.0 (a) K-p Ka Sechi-Zorn et al. EM value Kadyk et al. 10 ${}^{3}P_{0}$ Alexander et al. 5 200 (qm) - Argonne v,8 np --- Argonne v18 pp -5 Argonne v., nn h Bugg-Bryan np 92 Nijmegen np 93 -10 ပိ Nijmegen pp 93 100 10 11 ♦ Henneck np 93 Energy [keV] + VPI&SU np 94 -15 041 S × VPI&SU pp 94 5 li K_c ĭ¥n 9 1 1 1 0 00 00 Ġ <-C7 0 0 7 AAA OOA 10 un -20 0 100 200 300 400 E (MeV) SIDDHARTA Coll. Phys.Lett.B 704 (2011) 113 R. B. Wiringa, V. G. J. Stoks, R. Schiavilla Phys. Rev. C 51, 38 (1995)

LO: H. Polinder, J. Haidenbauer, U. Meißner, Nucl. Phys. A779 (2006) 244. NLO: J. Haidenbauer et al., Nucl. Phys. A915 (2013) 24.

> KISO event: K. Nakazawa et al., Prog. Theor. Exp. Phys. 2015, 033D02 IBUKI event J-PARC E07 Coll., Phys. Rev. Lett. 126, 062501 (2021)

9

Otón Vázguez Doce

S(deg)

Based in the measurement of the correlation function

<u>"Traditional" femtoscopy</u> analyses in Heavy lons Collisions:

- Study pairs of particles with "known" interaction

⇒ Determine the characteristics of the source (sizes 3-10 fm)

"Non-traditional" femtoscopy

- Study the interaction given a known source

Measurement of the **correlation function**, $C(\overline{p})$

$$(\overrightarrow{p_a}, \overrightarrow{p_b}) = \frac{P(\overrightarrow{p_a}, \overrightarrow{p_b})}{P(\overrightarrow{p_a})P(\overrightarrow{p_b})}$$

Measurement of the **correlation function**, $C(\overrightarrow{p_a}, \overrightarrow{p_b}) = \frac{P(\overrightarrow{p_a}, \overrightarrow{p_b})}{P(\overrightarrow{p_a})P(\overrightarrow{p_b})}$

Experimentally:

 $C(k^*) = \xi(k^*) \otimes \frac{N_{\text{same}}(k^*)}{N_{\text{mixed}}(k^*)}$ Pairs of particles from same collision Particles produced in different collisions

pair reference frame
$$k^* = \frac{|\vec{p}_a^* - \vec{p}_b^*|}{2}$$

 $C(\overrightarrow{p_a}, \overrightarrow{p_b}) = \frac{P(\overrightarrow{p_a}, \overrightarrow{p_b})}{P(\overrightarrow{p_a})P(\overrightarrow{p_b})}$ Measurement of the **correlation function**,

Experimentally:

Pairs of particles from same collision $C(k^*) = \xi(k^*) \otimes \frac{N_{\text{same}}(k^*)}{N_{\text{mixed}}(k^*)}$ Particles produced in different collisions

1

Corrections to the experimental measurement:

- Normalization
- **Resolution effects** -
- **Residual correlations**

$$\vec{p_{a}}^{\star}$$
 pair reference frame
$$\vec{p_{b}}^{\star}$$

$$k^{*} = \frac{|\vec{p_{a}}^{*} - \vec{p_{b}}^{*}|}{2}$$

$$C(k^*) = \int S(r^*) \left| \Psi(k^*, \overrightarrow{r^*}) \right|^2 d^3r^*$$

$$C(k^*) = \int S(r^*) |\Psi(k^*, \vec{r^*})|^2 d^3r^*$$

$$\vec{p_2}$$

$$\vec{p_1}$$
Emission source $S(r^*)$

Object of study of standard femtoscopy

Hadron-hadron interactions via femtoscopy with ALICE

Femtoscopy with small sources

- **Small particle-emitting source** created in pp and p–Pb collisions at the LHC
- Essential ingredient for detailed studies of the strong interaction

<u>The first step is "traditional" femtoscopy:</u> known interaction \rightarrow determine source size

- p-p interaction: Argonne v18 potential
- crosscheck with $p-\Lambda$ (χ EFT)

<u>The first step is "traditional" femtoscopy:</u> known interaction \rightarrow determine source size

- p-p interaction: Argonne v18 potential
- crosscheck with $p-\Lambda$ (χ EFT)

Determine gaussian "core" radius

- As a function of pair $\langle m_{T} \rangle$

- Common to all hadron-hadron pairs

 \approx

Effect of strong short-lived resonances Adds exponential tail to the source profile

 \rightarrow Angular distributions from EPOS

 \rightarrow Production fraction from SHM

	Primordial	Resonances lifetime
р	35.8 %	1.65 fm
٨	35.6 %	4.69 fm

Source size determined given the pair $< m_T >$ and considering the effect of strong resonances for the particles of the pair of interest

Example:

p-Ξ⁻: T> = 1.9 GeV/c ⇒ r_{core} = 0.92 ± 0.05 fm

$$\int_{\text{effect}} \text{strong resonances}$$

$$\Rightarrow r_{gauss} = 1.02 \pm 0.05 \text{ fm}$$

Selected results

K-p correlations in pp collisions ALICE Coll. Phys. Rev. Lett. 124 (2020) 092301

Jülich meson exchange model Eur. Phys. J. A47, 18 (2011)

 K^- -p correlation function C(k*)>1→ attractive interaction

Coulomb potential only Coulomb + Chiral Kyoto model Phys. Rev. C93 no. 1, 015201 (2016) Coulomb + Jülich model

Nucl. Phys. A 981 (2019)

K-p correlations in pp collisions ALICE Coll. Phys. Rev. Lett. 124 (2020) 092301

Jülich meson exchange model Eur. Phys. J. A47, 18 (2011)

 K^- -p correlation function C(k*)>1→ attractive interaction

Coulomb potential only Coulomb + Chiral Kyoto model Phys. Rev. C93 no. 1, 015201 (2016) Coulomb + Jülich model Nucl. Phys. A 981 (2019)

 \Rightarrow Evidence of the opening of the $\overline{K^0}$ n isospin breaking channel

$$\begin{array}{c|c} \hline \mathbf{n} & \mathbf{p} \\ \hline \bar{K}^0 & K^- \\ M(K^-p) + 5 \operatorname{MeV} = M(n\bar{K}^0) \end{array}$$

30

Otón Vázquez Doce

Hadron-hadron interactions via femtoscopy with ALICE

K-p correlations: Coupled channels

Kyoto model considering coupled-channel effects reproduces ALICE data

- Dependence on the system size

K-p correlations in pp, p-Pb, Pb-Pb collisions

100

 k^* (MeV/c)

32

Kyoto model considering coupled-channel effects reproduces ALICE data

- Dependence on the system size
- ⇒ Confirmed by ALICE analysis in p-Pb, Pb-Pb collisions

K-p correlations in pp, p-Pb, Pb-Pb collisions

Kyoto model considering coupled-channel effects reproduces ALICE data

- Dependence on the system size
- ⇒ Confirmed by ALICE analysis in p-Pb, Pb-Pb collisions

Hadron-hadron interactions via femtoscopy with ALICE

$p-\Xi^{-} \text{ correlation function}$ $S = 0 \qquad S = -1 \qquad S = -2 \qquad S = -3 \qquad S = -4 \qquad S = -5 \qquad S = -6 \qquad S = -6 \qquad \Delta \Xi, \ \Sigma \Xi, \ \Sigma \Sigma, \$

Otón Vázquez Doce

Hadron-hadron interactions via femtoscopy with ALICE

Lattice: slightly repulsive single particle potential in PNM for Ξ

 \Rightarrow Ξ appears at larger densities in NS

Courtesy J. Schaffner-Bielich (2021)

Lattice: slightly repulsive single particle potential in PNM for Ξ

- \Rightarrow Ξ appears at larger densities in NS
- \Rightarrow Stiffer EoS

Exact composition strongly depends on constituent interactions and couplings

Exact composition strongly depends on constituent interactions and couplings

• p-Λ correlation function: Critical test for χEFT

Exact composition strongly depends on constituent interactions and couplings

- **p**-**Λ** correlation function: **Critical test for χEFT**
- Attractive $p-\phi$ interaction demonstrated

ALICE Coll., arXiv:2105.05578 (submitted to PRL)

Hadron-hadron interactions via femtoscopy with ALICE

Exact composition strongly depends on constituent interactions and couplings

• **p**-Λ correlation function: **Critical test for χEFT**

ALICE Coll., arXiv:2105.05578 (submitted to PRL)

43

Otón Vázquez Doce

$p-\Omega^-$ correlation function in pp at 13 TeV

S = 0	S = -1	S = -2	S = -3	S = -4	S = -5	S = -6	
NN	ΝΛ, ΝΣ	ΛΛ, ΛΣ, ΣΣ, ΝΞ	ΛΞ, ΣΞ, ΝΩ	ΞΞ, ΛΩ, ΣΩ	ΞΩ	ΩΩ	

Lattice QCD N Ω potential

Could be influenced by inelastic channels NO $\rightarrow \Lambda \Xi$, $\Sigma \Xi$

Predicts the formation of a $p-\Omega^-$ di-baryon

\Rightarrow depletion in the correlation function

	HAL QCD: pΩ ⁻ binding energy
Strong interaction	1.5 MeV
Strong + Coulomb	2.5 MeV

 $m_{\rm K} = 525 \ {
m MeV}/c^2$

$p-\Omega^-$ correlation function in pp at 13 TeV

ALICE Coll. Nature 588, 232 (2020)

- Data more precise than lattice calculations
 - ⇒ First constraints in the S=-3 sector
- So far, **no indication of a bound state** No visible depletion of C(k*)

Uncertainty of calculations:

- \rightarrow Two extreme assumptions for the ³S₁ channel
 - Attractive as ${}^{5}S_{2}$
 - Dominated by inelastic channels

First measurement of the $\Lambda - \Xi^-$ correlation function

ALICE data compared with EFT and meson exchange model

J. Haidenbauer and U.-G. Meissner, Phys. Lett. B 684 (2010) 275–280 Th. A. Rijken, V. G. J. Stoks, and Y. Yamamoto, Phys. Rev. C 59 (1999) 21

- ⇒ Suggests shallow strong interaction
- \Rightarrow Decrease of theoretical uncertainty of N Ω coupling

Outlook

The LHC provides precise testing of the hadron-hadron interaction at distances lower than 1 fm. Femtoscopy data provide unprecedented constraints on hadron-hadron interactions

- \rightarrow We test lattice calculations
- \rightarrow We can study bound states
- $\rightarrow\,$ We provide constraints to the equation of state of neutron stars

Outlook

The LHC provides precise testing of the hadron-hadron interaction at distances lower than 1 fm. Femtoscopy data provide unprecedented constraints on hadron-hadron interactions

- \rightarrow We test lattice calculations
- \rightarrow We can study bound states
- $\rightarrow\,$ We provide constraints to the equation of state of neutron stars

Since last MESON conference:

• ALICE Coll. <u>PRL 123, 112002 (2019)</u>	р- Ξ
• ALICE Coll. <u>PLB 797, 134822 (2019)</u>	Λ - Λ
• ALICE Coll. <u>PRL 124, 092301 (2020)</u>	p-K
• ALICE Coll. <u>PLB 805, 135419 (2020)</u>	$\mathrm{p} extsf{-}\Sigma^0$
• ALICE Coll. <u>PLB 811, 135849 (2020)</u>	р-р, р-Л
• ALICE Coll. <u>Nature 588, 232–238 (2020)</u>	p-Ξ, p-Ω
• ALICE Coll. arXiv:2104.04427 (2021, subn	nitted to PRL)p- Λ
• ALICE Coll. arXiv:2105.05578 (2021, subn	nitted to PRL)p- ϕ
• ALICE Coll. arXiv:2105.05190 (2021, subn	nitted to PRL)B-antiB
• <u>Preliminary</u> 2021	p-d
Preliminary 2021	Λ - Ξ
• Preliminary 2021	p-p-p, p-p-Λ

Outlook

The LHC provides precise testing of the hadron-hadron interaction at distances lower than 1 fm. Femtoscopy data provide unprecedented constraints on hadron-hadron interactions

- \rightarrow We test lattice calculations
- \rightarrow We can study bound states
- $\rightarrow\,$ We provide constraints to the equation of state of neutron stars

Since last MESON conference:

• ALICE Coll. <u>PRL 123, 112002 (2019)</u>	p-Ξ
• ALICE Coll. <u>PLB 797, 134822 (2019)</u>	Λ - Λ
• ALICE Coll. <u>PRL 124, 092301 (2020)</u>	p-K
• ALICE Coll. PLB 805, 135419 (2020)	$p-\Sigma^0$
• ALICE Coll. PLB 811, 135849 (2020)	р-р, р-Л
• ALICE Coll. <u>Nature 588, 232–238 (2020)</u>	p-Ξ, p-Ω
• ALICE Coll. <u>arXiv:2104.04427</u> (2021, submitted to PRL)p-Λ	
• ALICE Coll. arXiv:2105.05578 (2021, submitted to PRL)p-\$	
• ALICE Coll. arXiv:2105.05190 (2021, submitted to PRL)B-anti	iB
• <u>Preliminary</u> 2021	p-d
Preliminary 2021	Λ - Ξ
• Preliminary 2021	р-р-р, р-р-Л

Data from **Run 3 and Run 4** of the LHC will provide many more possibilities

THANK YOU!