Rare kaon decays from NA62

021

Francesca Bucci, INFN Sezione di Firenze on behalf of the NA62 Collaboration

16th International Workshop on Meson Physics 17th - 20th May 2021

Historical foreword

Strange particles provided many building blocks of the Standard Model (SM):

- Strong production and weak decays → Flavor
- K0 K0 oscillation \rightarrow Flavor mixing
- θ/τ paradox \rightarrow P-violation
- Universality of the weak interaction \rightarrow Cabibbo theory
- Absence of FCNC → Four quarks (GIM)
- CP violation \rightarrow Six quarks (KM)

Standard Model has been growing incorporating step by step all the new discoveries

Rare kaon decays: $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ [Buras et al., JHEP11(2015)033]

- Flavour changing neutral current process with high CKM suppression
- Dominated by short distances: clean theoretical prediction
- Hadronic matrix element from semi-leptonic data

Making the dependence of the CKM explicit:

$$BR_{SM}(K^{+} \to \pi^{+} \nu \overline{\nu}) = (0.839 \pm 0.030) \cdot 10^{-10} \cdot \left(\frac{|V_{cb}|}{40.7 \cdot 10^{-3}}\right)^{2.8} \cdot \left(\frac{\gamma}{73.2^{\circ}}\right)^{0.74}$$

Taking $|V_{cb}|_{avg} = (40.7 \pm 1.4) \cdot 10^{-3}$, $|V_{ub}|_{avg} = (3.88 \pm 0.29) \cdot 10^{-3}$ and $\gamma = (73.2^{+6.3}_{-7.0})^{\circ}$ BR_{SM} $(K^+ \to \pi^+ \nu \overline{\nu}) = (0.84 \pm 0.10) \cdot 10^{-10}$

Beyond the SM

[Buras et al., JHEP11 (2015) 166]

Most extensions of SM predict contributions to the branching ratio, e.g.:

MFV Simplified Z, Z'; LFU violation; Custodial Randall-Sundrum; MSSM; Littlest Higgs with T-parity; Leptoquarks

[Isidori et al., Eur.Phys.J. C (2017) 77: 618]

BNL E787/E949: $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ with decays at rest

Artamov AV, et al. (E949 Collab.) *Phys. Rev. D 77, 052003 (2008) Adler S, et al. (E949 and E787) Phys. Rev. D 79, 092004 (2009)*

- Kaon decay-at-rest technique
- Separated beam
- Full $K^+ \rightarrow \pi^+ \rightarrow \mu^+ \rightarrow e^+$
- Small acceptance
- SES \approx SM

$$BR_{BNL}(K^{+} \to \pi^{+} \nu \overline{\nu}) = (1.73^{+1.15}_{-1.05}) \cdot 10^{-10}$$

Decays in flight: NA62 @ CERN

NA62 is installed in the CERN North Area

- 2016-2018: physics runs
- 2016 data: $K^+ \rightarrow \pi^+ \nu \nu$ result published
- 2017 data: $K^+ \rightarrow \pi^+ \nu \nu$ result published
- 2018 data (this talk): $K^+ \rightarrow \pi^+ \nu \nu$ result submitted for publication
- 2021-2024: physics runs

NA62 beam and detector [2017 JINST 12 P05025]

Illumination at GTK1

- SPS beam: 400 GeV/c proton on beryllium target
- Secondary hadron 75 GeV/c beam
- 70% pions, 24% protons, 6% kaons
- 60 m long fiducial region, ~ 5 MHz K⁺ decay rate, vacuum ~ O(10⁻⁶) mbar

NA62: Decay in flight

K⁺ main (background) decays

Decay channel	Branching ratio	
K^+ → μ^+ ν ($K_{\mu 2}$)	(63.56 \pm 0.11) \cdot 10 ⁻²	
$K^{+} {\rightarrow} \pi^{+} \pi^{0} \left(K_{2\pi}\right)$	(20.67 \pm 0.08) \cdot 10 ⁻²	
$K^{+} \rightarrow \pi^{+} \pi^{-} (K_{3\pi})$	$(5.583 \pm 0.024) \cdot 10^{-2}$	
K⁺→π⁺π⁻e⁺ν (K _{e4})	$(4.247 \pm 0.024) \cdot 10^{-5}$	

Kinematic cuts to define signal regions R1 and R2

NA62: $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ selection

Time – space association

Selection steps

- π^+ and K⁺ tracks reconstruction
- $K^+ \pi^+$ time matching: O(100 ps)
- decay vertex reconstruction
- π^+ identification (μ^+ rejection: > 10⁷)
- photon rejection: > 10⁷
- multi-track rejection
- kinematics rejection: O(10⁴)

(0.01 ns) 160000 (**m**m Beam K⁺ Beam K⁺ 40000 Accidental beam particle Accidental ²57 140000 beam particle 35000 120000 Entries 30000 Entri 100000 25000 80000 20000 60000 15000 40000 10000 20000 5000 -0.4 -0.20.2 0.4 0.6 10 15 20 25 30 35 40 -0.6 0 5 $\Delta T(KTAG-GTK)$ [ns] CDA [mm]

- KTAG: differential Cherenkov counter
- GTK: Gigatracker
- CDA: Closest Distance Approach

May 20, 2021

data - K⁺ $\rightarrow \pi^{+}\pi^{+}\pi^{-}$ control sample

Track extrapolation at collimator in enriched sample of upstream events Red boxes: collimator coverage

Both samples normalized to 1

• Vertex

F. Bucci

• Track slope

NA62: Background from standard K⁺ decays

The pure sample to determine f ^{kin} (region) is selected requiring $(P_K - P_0)^2$ to be consistent with $m_{\pi^+}^2$, and P_0 is reconstructed using only LKr information

- Similar data driven methods for $K^+ \rightarrow \pi^+ \pi^- \pi^- K^+ \rightarrow \mu^+ \nu$
- Monte Carlo simulations for the rarer $K^+ \rightarrow \pi^+ \pi^- e^+ \nu$ and $K^+ \rightarrow \pi^+ \gamma \gamma$

NA62 2018: Single Event Sensitivity

$$SES = \frac{1}{N_{K} \cdot \sum_{j} \left(A_{\pi v v}^{j} \cdot \varepsilon_{trig}^{j} \cdot \varepsilon_{RV}^{j}\right)} = (1.11 \pm 0.07) \cdot 10^{-11}$$

• N_K: effective number of K⁺ decays

 $\mathsf{N}_{\mathsf{K}} = \frac{\mathsf{N}_{\pi\pi} \cdot \mathsf{D}}{\mathsf{A}_{\pi\pi} \cdot \mathsf{B}\mathsf{R}_{\pi\pi}}$

- $N_{\pi\pi}$: number of K⁺ $\rightarrow \pi^{+}\pi^{0}$ decays from downscaled trigger
- D : down-scaling factor
- $A_{\pi\nu\nu}$, $A_{\pi\pi}$: signal, normalization selection acceptance (from MC)
- BR $_{\pi\pi}$: normalization decay branching ratio
- ϵ_{trig} : trigger efficiency
- $\epsilon_{\rm RV}$: random trigger efficiency
- j : bins of π^+ momentum

NA62 2018 Data: Summary of backgrounds

Process	Expected events in $\pi v v$ signal regions
K⁺→π⁺νν (SM)	$7.58 \pm 0.40_{syst} \pm 0.75_{exp}$
$K^+ \rightarrow \pi^+ \pi^0(\gamma)$	0.75 ± 0.04
$K^+ \rightarrow \mu^+ \nu(\gamma)$	0.49 ± 0.05
$K^+ \rightarrow \pi^+ \pi^- e^+ \nu$	0.50 ± 0.11
$K^+ \rightarrow \pi^+ \pi^+ \pi^-$	0.24 ± 0.08
$K^+ \rightarrow \pi^+ \gamma \gamma$	< 0.01
$K^+ \rightarrow I^+ \pi^0 v_I$	< 0.001
Upstream background	3.30 ^{+0.98} _{-0.73}
Total background	5.28 ^{+0.99} _{-0.74}

NA62 2018 Data: Control regions

Observed (expected) events in control regions. Signal regions blinded.

NA62 2018 Data: Signal efficiency

Sizeable improvements in 2018 data analysis (hardware and software)

	2017	2018-OLDCOL	2018-NEWCOL
Ν _κ	$(1.5 \pm 0.2) \cdot 10^{12}$	$(0.8 \pm 0.1) \cdot 10^{12}$	$(1.9 \pm 0.2) \cdot 10^{12}$
Α _{πνν}	$(3.0 \pm 0.3)\%$	$(4.0 \pm 0.4)\%$	$(6.4\pm0.6)\%$
ε _{RV}	0.64 ± 0.01	0.66 ± 0.01	0.66 ± 0.01
ε _{trig}	0.87 ± 0.03	0.88 ± 0.04	0.88 ± 0.04
N ^{exp} _{πνν} (SM)	2.16 ± 0.29	$\textbf{1.56} \pm \textbf{0.21}$	6.02 ± 0.82
B/S	~ 0.7	~ 0.7	~ 0.7

Increase of signal efficiency with the same B/S ratio

NA62 2018 Data: Box opened (ICHEP 2020)

Expected SM signal events: $7.58 \pm 0.40_{syst} \pm 0.75_{exp}$, expected background events: $5.28_{-0.74}^{+0.99}$ 17 candidates observed

NA62 2018 Data: Box opened

NEW COL Data / MC comparison

NA62 2018 Data: Momentum bins

 π^+ momentum range (15-45 GeV/c) split in six bins (5 GeV/c size)

NA62: Combined results

	2016 data	2017 data	2018 data
SES	(3.15 ± 0.24)·10 ⁻¹⁰	$(0.39 \pm 0.02) \cdot 10^{-10}$	$(0.111 \pm 0.007) \cdot 10^{-10}$
Expected SM signal	$\textbf{0.27}\pm\textbf{0.04}$	$\textbf{2.16} \pm \textbf{0.29}$	$\textbf{7.58} \pm \textbf{0.85}$
Expected background	0.15 ± 0.09	$\textbf{1.50}\pm\textbf{0.31}$	$5.28^{+0.99}_{-0.74}$
	1	2	17

 $BR(K^+ \to \pi^+ \nu \overline{\nu}) = (11.0^{+4.0}_{-3.5}(stat) \pm 0.3(syst)) \cdot 10^{-11}(3.5 \,\sigma \text{ significance})$

Grossman-Nir bound [PBL 398 163 (1997)]

Model independent limit assumes that the $K_L \to \pi^0 \nu \bar{\nu}$ is entirely CP-violating: BR $(K_L \to \pi^0 \nu \bar{\nu}) < 4.4 \text{ BR}(K^+ \to \pi^+ \nu \bar{\nu})$

New BR($K^+ \rightarrow \pi^+ \nu \bar{\nu}$) measurement from NA62 and BSM scenarios

- Large BR($K^+ \rightarrow \pi^+ \nu \bar{\nu}$) values with respect to the SM expectation start to be excluded
- High precision measurement needed

Some NA62 byproducts

- Search for invisible bosons $K^+ \rightarrow \pi^+ X$
- Search for invisible π^0 decays
- Lepton Flavour Violation
- Lepton Number Violation
- Lepton Universality
- Search for Heavy Neutral Leptons

Search for $K^+ \rightarrow \pi^+ X$

Fleebly interacting particle X in $K^+ \rightarrow \pi^+ X$ foreseen in several models:

- Dark scalar mixing with the Higgs
- Pseudo scalar (APLs, QCD axion, Axiflavon) mediating interactions between SM and hidden sector fields

Selection, normalisation and bgk evaluation are identical to that used for the $K^+ \to \pi^+ \nu \overline{\nu}$ measurement Bkg contributions are the same as for the $K^+ \to \pi^+ \nu \overline{\nu}$ analysis with the addition of the $K^+ \to \pi^+ \nu \overline{\nu}$ itself

Full 2016-2018 data set arXiv:2103.15389[hep-ex] submitted to JHEP

Lepton Flavour and Lepton Number Violation

New physics models which explain experimental observations such as neutrino oscillations or the possible flavour anomalies in B-physics can introduce LN and LF violation

Search for the LN violating $K^+ \to \pi^- \mu^+ e^+$ decay and the LF violating $K^+ \to \pi^+ \mu^- e^+$ and $\pi^0 \to \mu^- e^+$ decays

 $BR(K^+ \to \pi^+ \mu^- e^+) < 6.6 \times 10^{-11} @~90\% C.L. \qquad BR(K^+ \to \pi^- \mu^+ e^+) < 4.2 \times 10^{-11} @~90\% C.L.$

Improving on previous searches by one order of magnitude

Conclusions

- Strong kaon program continues to help building the SM
- Moving from exploration to precision in rare K decays
- Short term goals (2025):
 - BR($K^+ \rightarrow \pi^+ \nu \overline{\nu}$) to 10% (NA62)
 - BR($K_L \rightarrow \pi^0 \nu \bar{\nu}$) to SM SES (KOTO)
- Longer term goal:
 - BR($K^+ \rightarrow \pi^+ \nu \bar{\nu}$) to 5% ?
 - BR($K_L \rightarrow \pi^0 \nu \bar{\nu}$) to 20%?
- Compelling byproducts: LFV, LNV, Exotics, HNL,...

Spares

Rare kaon decays: $K_L \rightarrow \pi^0 \nu \bar{\nu}$

- The BR($K_L \rightarrow \pi^0 \nu \bar{\nu}$) depends only on the square of the imaginary part of the top loop which is CP-violating
- The charm contributions drop out because K_L^0 is modtly an odd linear combination of K^0 and $\overline{K^0}$
- This makes the theoretical prediction for the K_L^0 rate even cleaner than the K^+ one: ~ 1.5%

Inserting the numerical factors and making the dependence of the CKM explicit:

$$B(K_L \to \pi^0 \nu \bar{\nu}) = (3.36 \pm 0.05) \times 10^{-11} \left[\frac{|V_{ub}|}{3.88 \times 10^{-3}} \right]^2 \left[\frac{|V_{cb}|}{40.7 \times 10^{-3}} \right]^2 \left[\frac{\sin \gamma}{\sin 73.2^\circ} \right]^2$$

 $BR_{SM}(K_L \to \pi^0 \nu \bar{\nu}) = (3.4 \pm 0.6) \times 10^{-11}$

KOTO J-PARK: $K_L \rightarrow \pi^0 \nu \bar{\nu}$ prl 122 (2019) 2 [arXiv1810.09655]

- Data 2015 (2.2 × 10¹⁹, 30 GeV POT): BR($K_L \rightarrow \pi^0 \nu \bar{\nu}$) < 3.0 × 10⁻⁹ 90% CL
- Analysis of data 2016-2019 in progress

Preliminary results: 2016-2018 data

Several important detector upgrades and analysis improvements compared to 2015 data

KOTO preliminary (KAON, Sep 2019) SES: 6.9 \times 10⁻¹⁰ (0.05 SM evts) Expected bkg: 0.05 \pm 0.02 evts

New background estimates

Preliminary (ICHEP 2020)

Source	Expected (68%CL)	
$K_L \rightarrow \pi^0 \pi^0$	< 0.05	
$K_L \rightarrow \pi e v$ overlap pulse	< 0.05	
$K_L \rightarrow e e \gamma$	< 0.05	
$K_L \rightarrow \gamma \gamma$ core	< 0.06	
$K_L \rightarrow \gamma \gamma$ halo	< 0.10	
$K^+ \rightarrow \pi^0 e^+ v$	0.90 ± 0.27	
$K^+ \rightarrow \pi^+ \pi^0$	0.09 ± 0.09	
$K^+ ightarrow \pi^0 \mu^+ u$	< 0.12	
π^0 from <i>n</i> in CV	< 0.05	
Total	1.05 ± 0.28	

KOTO will reach SM SES by mid-decade: Step-2 required for BR mmt

Perspectives for high-intensity kaon physics at the SPS – M. Moulson (Frascati) – CERN Detector Seminar – 23 October 2020 32

Future of NA62: $BR(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ towards 5%?

- Improved immunity upstream decays from 2021 onward
- Expect NA62 to reach a precision of $\approx 10\%$ by 2025
- Experiment is currently limited by 65 ps time resolution of the beam tracker
- Developments for HL-LHC can lead to detectors with better timing (20 ps?)
- Not limited by beam intensity (target to be upgraded)
- Thinner straw tracker
- Reduce random veto

	NA62	COMET Phase-I	New Straw
Straw Wall Thickness	36 µm	20 µm	12 μm
Straw Diameter	9.8 mm	9.8 mm	4.8 mm
Metal Deposition	Cu+Au, 70nm	Al, 70 nm	Al, 70 nm
Photo			
Current Status	In Operation	Under Construction	Just Developed